Skip to main content

The Role of Siroheme in Sulfite and Nitrite Reductases

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Sulfite and nitrite reductases (SiRs/NiRs) use siroheme, an iron-containing isobacteriochlorin, alongside a [4Fe-4S] cluster to perform the six-electron reduction of sulfite to sulfide or nitrite to ammonia. X-ray crystallographic structures of the catalytic siroheme-containing subunit of Escherichia coli assimilatory SiR provide clues about the relationship between the SiRs and the NiRs, allowing us to use the E. coli enzyme as a model system for other siroheme-containing SiRs and NiRs.1–3 These structures also provide insight into the role of the siroheme in this powerful redox reaction, both as an anchor for the acid/base chemistry that directs substrate formation and as an electronically-flexible cofactor that drives the electron transfer reaction.

Keywords

  • Electron Paramagnetic Resonance
  • High Occupied Molecular Orbital
  • Nitrite Reductase
  • Sulfite Reductase
  • Direct Hydrogen Bond

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-78518-9_24
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-78518-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crane BR, Siegel LM, Getzoff ED. Sulfite reductase structure at 1.6 A: Evolution and catalysis for reduction of inorganic an ions. Science 1995; 270(5233):59–67.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Crane BR, Siegel LM, Getzoff ED. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: Structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. Biochemistry 1997; 36(40): 12120–12137.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Crane BR, Siegel LM, Getzoff ED. Structures of the siroheme-and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry 1997; 36(40):12101–12119.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Martens JH, Barg H, Warren MJ et al. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002; 58(3):275–285.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Siegel LM, Murphy MJ, Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: Molecular parameters and prosthetic groups. J Biol Chem 1973; 248(1):251–264.

    PubMed  CAS  Google Scholar 

  6. Vega JM, Garrett RH. Siroheme: A prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem 1975; 250(20):7980–7989.

    PubMed  CAS  Google Scholar 

  7. Krueger RJ, Siegel LM. Spinach siroheme enzymes: Isolation and characterization of ferredoxinsulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 1982; 21(12):2892–2904.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Crane BR, Getzoff ED. The relationship between structure and function for the sulfite reductases. Curr Opin Struct Biol 1996; 6(6):744–756.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Harborne NR, Griffiths L, Busby SJ et al. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol Microbiol 1992; 6(19):2805–2813.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Huynh BH, Kang L, DerVartanian DV et al. Characterization of a sulfite reductase from Desulfovibrio vulgaris. Evidence for the presence of a low-spin siroheme and an exchange-coupled siroheme-[4Fe-4S] unit. J Biol Chem 1984; 259(24):15373–15376.

    PubMed  CAS  Google Scholar 

  11. Liu MC, Peck Jr HD. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem 1981; 256(24):13159–13164.

    PubMed  CAS  Google Scholar 

  12. Godden JW, Turley S, Teller DC et al. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 1991; 253(5018):438–442.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Siegel LM, Rueger DC, Barber MJ et al. Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes. J Biol Chem 1982; 257(11):6343–6350.

    PubMed  CAS  Google Scholar 

  14. Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: Subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem 1974; 249(5): 1587–1598.

    PubMed  CAS  Google Scholar 

  15. Zeghouf M, Fontecave M, Coves J. A simplifed functional version of the Escherichia coli sulfite reductase. J Biol Chem 2000; 275(48):37651–37656.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Siegel LM, Davis PS, Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. 3. The Escherichia coli hemoflavoprotein: Catalytic parameters and the sequence of electron flow. J Biol Chem 1974; 249(5):1572–1586.

    PubMed  CAS  Google Scholar 

  17. Siegel LM. Biochemistry of the sulfur cycle. New York: Academic Press, 1975.

    Google Scholar 

  18. Lancaster JR, Vega JM, Kamin H et al. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem 1979; 254(4):1268–1272.

    PubMed  CAS  Google Scholar 

  19. Young LJ, Siegel LM. Superoxidized states of Escherichia coli sulfite reductase heme protein subunit. Biochemistry 1988; 27(16):5984–5990.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Young LJ, Siegel LM. Activated conformers of Escherichia coli sulfite reductase heme protein subunit. Biochemistry 1988; 27(l4):4991–4999.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Janick PA, Rueger DC, Krueger RJ et al. Characterization of complexes between Escherichia coli sulfite reductase hemoprotein subunit and its substrates sulfite and nitrite. Biochemistry 1983; 22(2):396–408.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Janick PA, Siegel LM. Electron paramagnetic resonance and optical evidence for interaction between siroheme and Fe4S4 prosthetic groups in complexes of Escherichia coli sulfite reductase hemoprotein with added ligands. Biochemistry 1983; 22(2):504–515.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Janick PA, Siegel LM. Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in Escherichia coli sulfite reductase hemoprotein subunit. Biochemistry 1982; 21(15):3538–3547.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Madden JF, Han SH, Siegel LM et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 2. Fe4S4 cluster vibrational modes. Biochemistry 1989; 28(13):5471–5477.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Han SH, Madden JF, Siegel LM et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 3. Bound ligand vibrational modes. Biochemistry 1989; 28(13):5477–5485.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Han SH, Madden JF, Thompson RG et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 1. Siroheme vibrational modes. Biochemistry 1989; 28(13):5461–5471.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Christner JA, Janick PA, Siegel LM et al. Mossbauer studies of Escherichia coli sulfite reductase complexes with carbon monoxide and cyanide. Exchange coupling and intrinsic properties of the [4Fe-4S] cluster. J Biol Chem 1983; 258(18):11157–11164.

    PubMed  CAS  Google Scholar 

  28. Christner JA, Munck E, Janick PA et al. Mossbauer spectroscopic studies of Escherichia coli sulfite reductase. Evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups. J Biol Chem 1981; 256(5):2098–2101.

    PubMed  CAS  Google Scholar 

  29. Christner JA, Munck E, Janick PA et al. Mossbauer evidence for exchange-coupled siroheme and [4Fe-4S] prosthetic groups in Escherichia coli sulfite reductase. Studies of the reduced states and of a nitrite turnover complex. J Biol Chem 1983; 258(18):11147–11156.

    PubMed  CAS  Google Scholar 

  30. Stroupe ME, Getzoff ED. Sulfite reductase hemoprotein. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K, eds. Handbook of Metalloproteins. Chichester: John Wiley and Sons, Ltd., 2001:1:471–485.

    Google Scholar 

  31. Tan J, Helms LR, Swenson RP et al. Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): Cloning and nucleotide sequence of the reductase gene. Biochemistry 1991; 30(41):9900–9907.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Lui SM, Soriano A, Cowan JA. Electronic properties of the dissimilatory sulphite reductase from Desulfovibrio vulgaris (Hildenborough): Comparative studies of optical spectra and relative reduction potentials for the [Fe4S4]-sirohaem prosthetic centres. Biochem J 1994; 304(Pt 2):441–447.

    PubMed  CAS  Google Scholar 

  33. Tan J, Cowan JA. Enzymatic redox chemistry: A proposed reaction pathway for the sixelectron reduction of SO3(2-) to S2-by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Biochemistry 1991; 30(36):8910–8917.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Seki Y, Ishimoto M. Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron. J Biochem (Tokyo) 1979; 86(1):273–276.

    CAS  Google Scholar 

  35. Seki Y, Sogawa N, Ishimoto M. Siroheme as an active catalyst in sulfite reduction. J Biochem (Tokyo) 1981; 90(5):1487–1492.

    CAS  Google Scholar 

  36. Soriano A, Cowan JA. Sulfite reductase: Active site residues are “noncatalytic”. Comparaison of reaction energetics for enzyme-and siroheme-catalyzed reduction of inorganic substrates. J Am Chem Soc 1995; 117:4724–4725.

    CrossRef  CAS  Google Scholar 

  37. Jentzen W, Ma JG, Shelnutt JA. Conservation of the conformation of the porphyrin macrocycle in hemoproteins. Biophys J 1998; 74(2 Pt 1):753–763.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Shelnutt JA, Song XZ, Ma JG et al. Nonplanar porphyrins and their significance in proteins. Chem Soc Rev 1998; 27:31–41.

    CrossRef  CAS  Google Scholar 

  39. Chang CK, Hanson LK, Richardson PF et al. Pi cation radicals of ferrous and free base isobacteriochlorins: Models for siroheme and sirohydrochlorin. Proc Natl Acad Sci USA 1981; 78(8):2652–2656.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Chang CK, Fajer J. Models of siroheme and sirohydrochlorin. Pi cation radicals of iron(II) isobacteriochlorin. J Am Chem Soc 1980; 102(2):848–851.

    CrossRef  CAS  Google Scholar 

  41. Aparicio PJ, Knaff DB, Malkin R. The role of an iron-sulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys 1975; 169(1):102–107.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Schiffer A, Parey K, Warkentin E et al. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Mol Biol 2008; 379:1063–1074.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth D. Getzoff .

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Stroupe, M.E., Getzoff, E.D. (2009). The Role of Siroheme in Sulfite and Nitrite Reductases. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_24

Download citation