Skip to main content

Biosynthesis of 5-Aminolevulinic Acid

  • Chapter
Tetrapyrroles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

5-Aminolevulinic acid (ALA) is the general precursor of all known tetrapyrroles. Currently, two different biosynthetic routes for ALA formation are known. Humans, animals, fungi and the α-group of the proteobacteria employ the one-step-condensation of succinyl-coenzyme A and glycine catalyzed by pyridoxal 5′-phosphate-dependent ALA synthase. In plants, algae, archaea and all other bacteria ALA is formed by two enzymes. The initial substrate glutamyl-tRNA is synthesized by glutamyl-tRNA synthetase and supplied both to protein and to tetrapyrrole biosynthesis. During the first committed step of ALA synthesis a NADPH-dependent glutamyl-tRNA reductase reduces glutamyl-tRNA to form glutamate-1-semialdehyde. The aldehyde is subsequendy transaminated by glutamate-1-semialdehyde-2,1-aminomutase to yield ALA. Evidence for metabolic channeling of the reactive aldehyde between glutamyl-tRNA reductase and the aminomutase is outlined based on the structures of both enzymes. The enzymatic mechanisms deduced from biochemical investigations and recently solved crystal structures are described for all participating enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shemin D, Russell CS. Delta-aminoievulinic acid, its role in the biosynthesis of porphyrins and purines. J American Chem Soc 1953; 75:4873–4875.

    Article  CAS  Google Scholar 

  2. Beale SI, Castelfranco PA. 14C incorporation from exogenous compounds into-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 1973; 52:143–149.

    Article  PubMed  CAS  Google Scholar 

  3. Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215–218.

    Article  PubMed  CAS  Google Scholar 

  4. Ferreira GC. 5-Aminolevulinate synthase and mammalian heme biosynthesis. In: Ferreira GC, Moura JJG, Franco R, eds. Iron Metabolism. Weinheim, Germany: Wiley-VCH, 1999:15–29.

    Chapter  Google Scholar 

  5. Kikuchi G, Kumar AM, Tamalge P et al. The enzymatic synthesis of d-aminolevulinic acid. J Biol Chem 1958; 233:1214–1219.

    PubMed  CAS  Google Scholar 

  6. Gibson KD, Laver WG, Neuberger A. Initial steps in the biosynthesis of porphyrins. The formation of d-aminolevulinic acid from glycine and succinyl-CoA by particles of chicken erythrocytes. Biochem J 1958; 70:71–81.

    PubMed  CAS  Google Scholar 

  7. Jordan PM. New comprehensive biochemistry; No. 19. In: Neuberger A, Van Deenen LLM, eds. Biosynthesis of Tetrapyrroles. Amsterdam: Elsevier, 1991.

    Google Scholar 

  8. Bolt EL, Kryszak L, Zeilstra-Ryalls J et al. Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur J Biochem 1999; 265:290–299.

    Article  PubMed  CAS  Google Scholar 

  9. Shoolingin-Jordan PM, Al-Daihan S, Alexeev D et al. 5-Aminolevulinic acid synthase: Mechanism, mutations and medicine. Biochim Biophys Acta 2003; 1647:361–366.

    PubMed  CAS  Google Scholar 

  10. Zhang J, Ferreira GC. Transient state kinetic investigation of 5-aminolevulinate synthase reaction mechanism. J Biol Chem 2002; 277:44660–44669.

    Article  PubMed  CAS  Google Scholar 

  11. Hunter GA, Ferreira GC. Lysine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates. Biochemistry 1999; 38:3711–3718.

    Article  PubMed  CAS  Google Scholar 

  12. Hunter GA, Ferreira GC. Presteady-state reaction of 5-aminolevulinate synthase. Evidence for a rate-determining product release. J Biol Chem 1999; 274:12222–12228.

    Article  PubMed  CAS  Google Scholar 

  13. Tan D, Harrison T, Hunter GA et al. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase. Biochemistry 1998; 37:1478–1484.

    Article  PubMed  CAS  Google Scholar 

  14. Gong J, Hunter GA, Ferreira GC. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5′-phosphate cofactor. Biochemistry 1998; 37:3509–3517.

    Article  PubMed  CAS  Google Scholar 

  15. Huang DD, Wang WY, Gough SP et al. delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 1984; 225:1482–1484.

    Article  PubMed  CAS  Google Scholar 

  16. Schon A, Krupp G, Gough S et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 1986; 322:281–284.

    Article  PubMed  CAS  Google Scholar 

  17. Sekine S, Nureki O, Sakamoto K et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J Mol Biol 1996; 256:685–700.

    Article  PubMed  CAS  Google Scholar 

  18. Sekine S, Nureki O, Tateno M et al. The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem 1999; 261:354–360.

    Article  PubMed  CAS  Google Scholar 

  19. Madore E, Florentz C, Giege R et al. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 1999; 266:1128–1135.

    Article  PubMed  CAS  Google Scholar 

  20. Kruger MK, Sorensen MA. Aminoacylation of hypomodified tRNAGlu in vivo. J Mol Biol 1998; 284:609–620.

    Article  PubMed  CAS  Google Scholar 

  21. Stange-Thomann N, Thomann HU, Lloyd AJ et al. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 1994; 91:7947–7951.

    Article  PubMed  CAS  Google Scholar 

  22. Freist W, Gauss DH, Soll D et al. Glutamyl-tRNA sythetase. Biol Chem 1997; 378:1313–1329.

    PubMed  CAS  Google Scholar 

  23. Tumbula DL, Becker HD, Chang WZ et al. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000; 407:106–110.

    Article  PubMed  CAS  Google Scholar 

  24. Nureki O, Vassylyev DG, Katayanagi K et al. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science 1995; 267:1958–1965.

    Article  PubMed  CAS  Google Scholar 

  25. Sekine S, Nureki O, Shimada A et al. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 2001; 8:203–206.

    Article  PubMed  CAS  Google Scholar 

  26. Schubert WD, Moser J, Schauer S et al. Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 2002; 74:205–215.

    Article  PubMed  CAS  Google Scholar 

  27. Moser J, Schubert WD, Heinz DW et al. Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem Soc Trans 2002; 30:579–584.

    Article  PubMed  CAS  Google Scholar 

  28. Moser J, Lorenz S, Hubschwerlen C et al. Methanopyrus kandleri Glutamyl-tRNA Reductase. J Biol Chem 1999; 274:30679–30685.

    Article  PubMed  CAS  Google Scholar 

  29. Moser J, Schubert WD, Beier V et al. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 2001; 20:6583–6590.

    Article  PubMed  CAS  Google Scholar 

  30. Schauer S, Chaturvedi S, Randau L et al. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 2002; 277:48657–48663.

    Article  PubMed  CAS  Google Scholar 

  31. Krieger R, Rompf A, Schobert M et al. The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and integration host factor. Mol Genet Genomics 2002; 267:409–417.

    Article  PubMed  CAS  Google Scholar 

  32. Schobert M, Jahn D. Regulation of heme biosynthesis in nonphototrophic bacteria. J Mol Microbiol Biotechnol 2002; 4:287–294.

    PubMed  CAS  Google Scholar 

  33. Wang L, Elliott M, Elliott T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 1999; 181:1211–1219.

    PubMed  CAS  Google Scholar 

  34. Wang L, Wilson S, Elliott T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 1999; 181:6033–6041.

    PubMed  CAS  Google Scholar 

  35. Kumar AM, Csankovszki G, Soll D. A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 1996; 30:419–426.

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka R, Yoshida K, Nakayashiki T et al. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 1996; 110:1223–1230.

    Article  PubMed  CAS  Google Scholar 

  37. Sangwan I, O’Brian MR. Expression of a soybean gene encoding the tetrapyrrole-synthesis enzyme glutamyl-tRNA reductase in symbiotic root nodules. Plant Physiol 1999; 119:593–598.

    Article  PubMed  CAS  Google Scholar 

  38. McCormac AC, Fischer A, Kumar AM et al. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 2001; 25:549–561.

    Article  PubMed  CAS  Google Scholar 

  39. Bougri O, Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 1996; 9:867–878.

    Article  PubMed  CAS  Google Scholar 

  40. Smith MA, Grimm B, Kannangara CG et al. Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci USA 1991; 88:9775–9779.

    Article  PubMed  CAS  Google Scholar 

  41. Hag LL, Jahn D. Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 1992; 31:7143–7151.

    Article  Google Scholar 

  42. Pugh CE, Harwood JL, John RA. Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino-and dioxo-intermediates in the synthesis of aminolevulinate. J Biol Chem 1992; 267:1584–1588.

    PubMed  CAS  Google Scholar 

  43. Friedmann HC, Duban ME, Valasinas A et al. The enantioselective participation of (S)-and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 1992; 185:60–68.

    Article  PubMed  CAS  Google Scholar 

  44. Grimm B, Smith MA, von Wettstein D. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 1992; 206:579–585.

    Article  PubMed  CAS  Google Scholar 

  45. Smith MA, Kannangara CG, Grimm B. Glutamate 1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 1992; 31:11249–11254.

    Article  PubMed  CAS  Google Scholar 

  46. Brody S, Andersen JS, Kannangara CG et al. Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry. Biochemistry 1995; 34:15918–15924.

    Article  PubMed  CAS  Google Scholar 

  47. Smith MA, King PJ, Grimm B. Transient-state kinetic analysis of Synechococcus glutamate 1-semialdehyde aminotransferase. Biochemistry 1998; 37:319–329.

    Article  PubMed  CAS  Google Scholar 

  48. Contestabile R, Jenn T, Akhtar M et al. Reactions of glutamate 1-semialdehyde aminomutase with R-and S-enantiomers of a novel, mechanism-based inhibitor, 2,3-diaminopropyl sulfate. Biochemistry 2000; 39:3091–3096.

    Article  PubMed  CAS  Google Scholar 

  49. Hennig M, Grimm B, Contestabile R et al. Crystal structure of glutamate-1-semialdehyde aminomutase: An alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 1997; 94:4866–4871.

    Article  PubMed  CAS  Google Scholar 

  50. Contestabile R, Angelaccio S, Maytum R et al. The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J Biol Chem 2000; 275:3879–3886.

    Article  PubMed  CAS  Google Scholar 

  51. Grimm B. Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Nad Acad Sci USA 1990; 87:4169–4173.

    Article  CAS  Google Scholar 

  52. Hag LL, Kumar AM, Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 1994; 6:265–275.

    Google Scholar 

  53. Hungerer C, Troup B, Romling U et al. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. Mol Gen Genet 1995; 248:375–380.

    Article  PubMed  CAS  Google Scholar 

  54. Vavilin DV, Vermaas WF. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Plant Physiol 2002; 115:9–24.

    Article  CAS  Google Scholar 

  55. Herman CA, Im CS, Beale SI. Light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase in carotenoid-deficient Chlamydomonas reinhardtii cells. Plant Mol Biol 1999; 39:289–297.

    Article  PubMed  CAS  Google Scholar 

  56. Im CS, Beale SI. Identification of possible signal transduction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 2000; 210:999–1005.

    Article  PubMed  CAS  Google Scholar 

  57. Chen L, Keramati L, Helmann JD. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA 1995; 92:8190–8194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jahn .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jahn, D., Heinz, D.W. (2009). Biosynthesis of 5-Aminolevulinic Acid. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_2

Download citation

Publish with us

Policies and ethics