Approximately 40% of a plant’s dry mass consists of carbon, fixed in photosynthesis. This process is vital for growth and survival of virtually all plants during the major part of their growth cycle. In fact, life on Earth in general, not just that of plants, totally depends on current and/or past photosynthetic activity. Leaves are beautifully specialized organs that enable plants to intercept light necessary for photosynthesis. The light is captured by a large array of chloroplasts that are in close proximity to air and not too far away from vascular tissue, which supplies water and exports the products of photosynthesis. In most plants, CO2 uptake occurs through leaf pores, the stomata, which are able to rapidly change their aperture (Sect. 5.4 of Chapter 3 on plant water relations). Once inside the leaf, CO2 diffuses from the intercellular air spaces to the sites of carboxylation in the chloroplast (C3 species) or in the cytosol (C4 and CAM species).


  1. Adams III, W.W., Demmig-Adams, B., Logan, B.A., Barker, D.H., & Osmond, C.B. 1999. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ. 22: 125–136.Google Scholar
  2. Allen, M.T. & Pearcy, R.W. 2000. Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122: 470–478.Google Scholar
  3. Atkin, O.K., Scheurwater, I., & Pons, T.L. 2006. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Change Biol. 12: 500–515.Google Scholar
  4. Bailey, S., Walters, R.G., Jansson, S., & Horton, P. 2001. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801.PubMedGoogle Scholar
  5. Bastide, B., Sipes, D., Hann, J., & Ting, I.P. 1993. Effect of severe water stress on aspects of crassulacean acid metabolism in Xerosicyos. Plant Physiol. 103: 1089–1096.PubMedCentralPubMedGoogle Scholar
  6. Beerling, D.J. & Osborne, C.P. 2006. The origin of the savanna biome. Global Change Biol. 12: 2023–2031.Google Scholar
  7. Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr., A.R., & Long, S.P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24: 253–259.Google Scholar
  8. Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr., A.R., & Long, S.P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24: 253–259.Google Scholar
  9. Bernacchi, C.J., Portis, A.R., Nakano, H., Von Caemmerer, S., & Long, S.P. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130: 1992-1998.PubMedCentralPubMedGoogle Scholar
  10. Berry, J.A. & Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31: 491–543.Google Scholar
  11. Berry, J.A. & Raison, J.K. 1981. Responses of macrophytes to temperature. In: Encyclopedia of plant physiology, Vol 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 277–338.Google Scholar
  12. Bolhàr-Nordenkampf, H.R. & Öquist, G. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In: Photosynthesis and production in a changing environment, D.O. Hall, J.M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood, & S.P. Long (eds.). Chapman & Hall, London, pp. 193–206.Google Scholar
  13. Boonman, A., Prinsen, E., Gilmer, F., Schurr, U., Peeters, A.J.M., Voesenek, L.A.C.J., & Pons, T.L. 2007. Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143: 1841–1852.PubMedCentralPubMedGoogle Scholar
  14. Bowes, G. & Salvucci, M.E. 1989. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot. 34: 233–286.Google Scholar
  15. Bowes, G., Rao, S.K., Estavillo, G.M., & Reiskind, J.B. 2002. C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct. Plant Biol. 29: 379–392.Google Scholar
  16. Brown, R. & Bouton, J.H. 1993. Physiology and genetics of interspecific hybrids between photosynthetic types. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 435–456.Google Scholar
  17. Brown, R.H. & Hattersley, P.W. 1989. Leaf anatomy of C3–C4 species as related to evolution of C4 photosynthesis. Plant Physiol. 91: 1543–1550.PubMedCentralPubMedGoogle Scholar
  18. Brugnoli, E. & Björkman, O. 1992. Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth. Res. 32: 23–35.PubMedGoogle Scholar
  19. Brugnoli, E. & Lauteri, M. 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon-isotope fractionation of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95: 628–635.PubMedCentralPubMedGoogle Scholar
  20. Buchmann, N., Guehl, J.M., Barigah, T.S., & Ehleringer, J.R. 1997. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an amazonian rain forest (French Guiana). Oecologia 110: 120–131.Google Scholar
  21. Bunce, J.A. 2004. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140: 1–10.PubMedGoogle Scholar
  22. Canadell, J.G., Pataki, D.E., Gifford, R., Houghton, R.A., Luo, Y., Raupach, M.R., Smith, P., & Steffen. W. 2007. Saturation of the terrestrial carbon sink. In: Terrestrial ecosystems in a changing world, J.G. Canadell, D. Pataki, & L. Pitelka (eds.). Springer, Berlin, pp. 59–78.Google Scholar
  23. Cavagnaro, J.B. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76: 273–277.Google Scholar
  24. Cen, Y.-P. & Sage, R.F. 2005. The regulation of ribulose-1,5-bisphosphate carboxylase activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol. 139: 1–12.Google Scholar
  25. Cerling, T.E., Harris, J.H., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., & Ehleringer, J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.Google Scholar
  26. Chazdon, R.L. & Pearcy, R.W. 1986. Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69: 517–523.Google Scholar
  27. Chazdon, R.L. & Pearcy, R.W. 1991. The importance of sunflecks for forest understory plants.BioSciences 41: 760–766.Google Scholar
  28. Chow, W.S. 2003. Photosynthesis: from natural towards artificial. J. Biol. Phys. 29: 447–459.PubMedCentralPubMedGoogle Scholar
  29. Chow, W.S., Hope, A.B., & Anderson, J.M. 1989. Oxygen per flash from leaf disks quantifies photosystem II. Biochim. Biophys. Acta 973: 105–108.Google Scholar
  30. Christie, E.K. & Detling, J.K. 1982. Analysis of interference between C3 and C4 grasses in relation to temperature and soil nitrogen supply. Ecology 63: 1277–1284.Google Scholar
  31. Christmann, A., Hoffmann, T., Teplova, I., Grill, E., & Müller, A. 2005. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 137: 209–219.PubMedCentralPubMedGoogle Scholar
  32. Coté, F.X., André, M., Folliot, M., Massimino, D., & Daguenet, A. 1989. CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. determination or total and malate-decarboxylation-dependent CO2-assimilation rates; study of light O2-uptake. Plant Physiol. 89: 61–68.PubMedCentralPubMedGoogle Scholar
  33. Coupe, S.A., Palmer, B.G., Lake, J.A., Overy, S.A., Oxborough, K., Woodward, F.I., Gray, J.E., & Quick, W.P. 2006 Systemic signalling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 57: 329–341.PubMedGoogle Scholar
  34. Cui, M. & Nobel, P.S. 1994. Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ. 17: 935–944.Google Scholar
  35. DeLucia, E.H., Nelson, K., Vogelmann, T.C., & Smith, W.K. 1996. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ. 19: 159–170.Google Scholar
  36. Demmig-Adams, B. & Adams III, W.W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21–26.Google Scholar
  37. Demmig-Adams, B. & Adams III, W.W. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172: 11–21.PubMedGoogle Scholar
  38. DeRidder, B.P. & Salvucci, M.E. 2007. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Sci. 172: 246–254.Google Scholar
  39. Downton, W.J.S., Loveys, B.R., & Grant, W.J.R. 1988. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol. 108: 263–266.Google Scholar
  40. Drennan, P.M. & Nobel, P.S. 2000. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23: 767–781.Google Scholar
  41. Eckstein, J., Beyschlag, W., Mott, K.A., & Ryell, R.J. 1996. Changes in photon flux can induce stomatal patchiness. Plant Cell. Environ. 19: 1066–1074.Google Scholar
  42. Ehleringer, J., & Björkman, O. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2, and O2concentration. Plant Physiol. 59: 86–90.PubMedCentralPubMedGoogle Scholar
  43. Ehleringer, J.R. & Monson, R. K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24: 411–439.Google Scholar
  44. Ehleringer, J., Björkman, O., & Mooney, H.A. 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192: 376–377.PubMedGoogle Scholar
  45. Ehleringer, J.R., Schulze, E.-D., Ziegler, H., Lange, O.L., Farquhar, G.D., & Cowan, I.R. 1985. Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481.PubMedGoogle Scholar
  46. Eller, B.M. & Ferrari, S. 1997. Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant Cell Environ. 20: 93–100.Google Scholar
  47. Ellis, R.P. 1977. Distribution of the Kranz syndrome in the Southern African Eragrostoideae and the Panicoideae according to bundle sheath anatomy and cytology. Agroplantae 9: 73–110.Google Scholar
  48. Ellis, R.P., Vogel, J.C., & Fuls, A. 1980. Photosynthetic pathways and the geographical distribution of grasses in south west Africa/Namibia. S. Afr. J. Sci. 76: 307–314.Google Scholar
  49. Elzenga, J.T.M. & Prins, H.B.A. 1988. Adaptation of Elodea and Potamogeton to different inorganic carbon levels and the mechanism for photosynthetic bicarbonate utilisation. Aust. J. Plant Physiol. 15: 727–735.Google Scholar
  50. Elzenga, J.T.M. & Prins, H.B.A. 1989. Light-induced polar pH changes in leaves of Elodea canadensis. I. Effects of carbon concentration and light intensity. Plant Physiol. 91: 62–67.PubMedCentralPubMedGoogle Scholar
  51. Ethier, G.J. & Livingston, N.J. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 27: 137–153.Google Scholar
  52. Evans, J.R. 1988. Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Aust. J. Plant Physiol. 15: 93–106.Google Scholar
  53. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.Google Scholar
  54. Evans, J.R. 1995. Carbon fixation profiles do reflect light absorption profiles in leaves. Aust. J. Plant Physiol. 22: 865–873.Google Scholar
  55. Evans, J.R. & Loreto, F. 2000. Acquisition and diffusion of CO2in higher plant leaves. In: Photosynthesis: physiology and metabolism, R.C. Leegood, T.D.Sharkey, & S. Von Caemmerer (eds.). Kluwer Academic Publishers, Dordrecht, pp. 321–351.Google Scholar
  56. Evans, J.R. & Seemann, J.R. 1989. The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Photosynthesis, W.R. Briggs (ed.). Alan Liss, New York.Google Scholar
  57. Evans, J.R. & Vogelmann, T.C. 2003. Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ. 26: 547–560.Google Scholar
  58. Evans, J.R. & Von Caemmerer, S. 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110: 339–346.PubMedCentralPubMedGoogle Scholar
  59. Evans, J.R., Sharkey, T.D., Berry, J.A., & Farquhar, G.D. 1986. Carbon isotope discrimination measured with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust. J. Plant Physiol. 13: 281–292.Google Scholar
  60. Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290: 291–296.PubMedGoogle Scholar
  61. Farmer, A.M. 1996. Carbon uptake by roots. In: Plant roots: the hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds.). Marcel Dekker, Inc., New York, pp. 679–687.Google Scholar
  62. Farquhar, G.D. & Richards, R.A. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552.Google Scholar
  63. Farquhar, G.D., Von Caemmerer, S., & Berry, J.A. 1980. A biochemical model of photosynthetic CO2assimilation in leaves of C3 species. Planta 149: 78–90.PubMedGoogle Scholar
  64. Farquhar, G.D., O’Leary, M.H., & Berry, J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 131–137.Google Scholar
  65. Field, C.B., Ball, T., & Berry, J.A. 1989. Photosynthesis: principles and field techniques. In: Plant physiological ecology; field methods and instrumentation, R.W. Pearcy, J.R. Ehleringer, H.A. Mooney, & P.W. Rundel (eds.). Chapman and Hall, London, pp. 209–253.Google Scholar
  66. Feild, T.S., Lee, D.W., & Holbrook, N.M. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127: 566–574.PubMedCentralPubMedGoogle Scholar
  67. Flanagan, L.B. & Jefferies, R.L. 1989. Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity. Plant Cell Environ. 12: 559–568.Google Scholar
  68. Flexas, J. & Medrano, H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89: 183–189.PubMedGoogle Scholar
  69. Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey T.D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6: 269–279.PubMedGoogle Scholar
  70. Flexas, J., Ribas-Carbó, M., Hanson, D.T., Bota J., Otto, B., Cifre, J., McDowell, N., Medrano, H., & Kaldenhoff, R. 2006a. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48: 427–439.Google Scholar
  71. Flexas, J., Bota, J., Galmés, J., Medrano, H., & Ribas-Carbó, M. 2006b. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant. 127: 343–352.Google Scholar
  72. Flexas, J., Diaz-Espejo, Galmés, J., Kaldenhoff, R., Medrano, H. & Ribas-Carbó, M. 2007a. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30: 1284–1298.Google Scholar
  73. Flexas, J., Diaz-Espejo, A., Berry, J.A., Cifre, J., Galmés, J., Kaidenhoff, R., Medrano, H. & Ribas-Carbo, M. 2007b. Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J. Exp. Bot. 58: 1533–1543.Google Scholar
  74. Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., & Medrano, H. 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. In press.Google Scholar
  75. Flügge, U.I., Stitt, M., & Heldt, H.W. 1985. Light-driven uptake or pyruvate into mesophyll chloroplasts from maize. FEBS Lett. 183: 335–339.Google Scholar
  76. Fredeen, A.L., Gamon, J.A., & Field, C.B. 1991. Responses of photosynthesis and carbohydrate partitioning to limitations in nitrogen and water availability in field grown sunflower. Plant Cell Environ. 14: 969–970.Google Scholar
  77. Galmés, J., Flexas, J., Keys, A.J., Cifre, J., Mitchell, R.A.C., Madgwick, P.J., Haslam R.P., Medrano, H., & Parry, M.A.J. 2005. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ. 28: 571–579.Google Scholar
  78. Galmés, J., Medrano, H., & Flexas, J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 175: 81–93.PubMedGoogle Scholar
  79. Genty, B., Briantais, J.-M., & Baker, N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.Google Scholar
  80. Ghannoum, O., Evans, J.R., Chow, W.S., Andrews, T.J., Conroy, J.P., & Von Caemmerer, S. 2005. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-Malic enzyme C4 grasses. Plant Physiol. 137: 638–650.PubMedCentralPubMedGoogle Scholar
  81. Gillon, J.S. & Yakir, D. 2000. Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol. 123: 201–214.PubMedCentralPubMedGoogle Scholar
  82. Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant 99: 197–209.Google Scholar
  83. Goldschmidt, E.E. & Huber, S.C. 1992. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 99: 1443–1448.PubMedCentralPubMedGoogle Scholar
  84. Gornic, G., Le Gouallec, J.-L., Briantais, J.M., & Hodges, M. 1989. Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostoma repens (Lour) Hall f.). Planta 177: 84–90.Google Scholar
  85. Grace, J. 2004. Understanding and managing the global carbon cycle. J. Ecol. 92: 189–202.Google Scholar
  86. Grams, E.E., Koziolek, C., Lautner, S., Matyssek, R., & Fromm, J. 2007. Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ. 30: 79–84.PubMedGoogle Scholar
  87. Grassi, G. & Magnani, F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28: 834–849.Google Scholar
  88. Gunasekera, D. & Berkowitz, G.A. 1992. Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon. Plant Physiol. 98: 660–665.PubMedCentralPubMedGoogle Scholar
  89. Guy, R.D., Fogel, M.L., & Berry, J.A. 1993. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101: 37–47.PubMedCentralPubMedGoogle Scholar
  90. Hanson, H.C. 1917. Leaf structure as related to environment. Am. J. Bot. 4: 533–560.Google Scholar
  91. Harris, F.S. & Martin, C.E. 1991. Correlation between CAM-cycling and photosynthetic gas exchange in five species of (Talinum) (Portulacaceae) Plant Physiol. 96: 1118–1124.PubMedCentralPubMedGoogle Scholar
  92. Hatch, M.D. & Carnal, N.W. 1992. The role of mitochondria in C4 photosynthesis. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 135–148.Google Scholar
  93. Hatch, M.D. & Slack, C.R. 1966. Photosynthesis by sugar cane leaves A new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101: 103–111.PubMedCentralPubMedGoogle Scholar
  94. Hatch, M.D. & Slack, C.R. 1998. C4 photosynthesis: discovery, resolution, recognition, and significance. In: Discoveries in plant biology, S.-Y. Yang & S.-D. Kung (eds.). World Scientific Publishing, Hong Kong, pp. 175–196.Google Scholar
  95. Hattersley, P.W. 1983. The distribution or C3 and C4 grasses in Australia in relation to climate. Oecologia 57: 113–128.Google Scholar
  96. Henderson, S.A., Von Caemmerer, S., & Farquhar, G.D. 1992. Short-term measurements of carbon isotope discrimination in several C4 species. Aust. J. Plant Physiol. 19: 263–285.Google Scholar
  97. Henderson, S, Hattersley, P., Von Caemmerer, S & Osmond, C.B. 1995. Are C4 pathway plants threatened by global climatic change? In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds.). Springer-Verlag, Berlin, pp. 529–549.Google Scholar
  98. Hibberd, J.M. & Quick, W.P. 2002. Xharacteristics of C4 photosynthesis in stms and ptioes of C3 flowering plants. Nature 415: 451–454.PubMedGoogle Scholar
  99. Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57: 291–302.PubMedGoogle Scholar
  100. Holbrook, N.M., Shashidhar, V.R., James, R.A., & Munns, R. 2002. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J. Exp. Bot. 53: 1503–1514.PubMedGoogle Scholar
  101. Houghton, R.A. 2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35: 313–347.Google Scholar
  102. Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., Freeman, K.H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3and C4 plant abundance. Science 293: 1647–1651.PubMedGoogle Scholar
  103. Hubick, K. 1990. Effects of nitrogen source and water limitation on growth, transpiration efficiency and carbon-isotope discrimination in peanut cultivars. Aust. J. Plant Physiol. 17: 413–430.Google Scholar
  104. Hubick, K. & Farquhar, G.D. 1989. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant Cell Environ. 12: 795–804.Google Scholar
  105. Huner, N.P.A., Öquist, G., & Sarhan, F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3: 224–230.Google Scholar
  106. Hungate, B.A., Reichstein, M., Dijkstra, P., Johnson, D., Hymus, G., Tenhunen, J. D., Hinkle, C.R., & Drake, B.G. 2002. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biol. 8: 289–298.Google Scholar
  107. Jahnke, S. & Pieruschka, R. 2006. Air pressure in clamp-on leaf chambers: a neglected issue in gas exchange measurements. J. Exp. Bot. 57: 2553–2561.PubMedGoogle Scholar
  108. Johnson, G.N., Young, A.J., Scholes, J.D., & Horton, P. 1993a. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16: 673–679.Google Scholar
  109. Johnson, G.N., Scholes, J.D., Horton, P., & Young, A.J. 1993b. Relationship between carotenoid composition and growth habit in British plant species. Plant Cell Environ. 16: 681–686.Google Scholar
  110. Jones, P.G., Lloyd, J.C., & Raines, C.A. 1996. Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes. Plant Cell Environ. 19: 231–236.Google Scholar
  111. Jordan, D.B. & Ogren, W.L. 1981. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161: 308–313.Google Scholar
  112. Kalisz, S. & Teeri, J.A. 1986. Population-level variation in photosynthetic metabolism and growth in Sedum wrightii. Ecology 67: 20–26.Google Scholar
  113. Kao, W.-Y. & Forseth, I.N. 1992. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.Google Scholar
  114. Keeley, J.E. 1990. Photosynthetic pathways in freshwater aquatic plants. Trends Ecol. Evol. 5: 330–333.PubMedGoogle Scholar
  115. Keeley, J.E. & Busch, G. 1984. Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiol. 76: 525–530.PubMedCentralPubMedGoogle Scholar
  116. Keeley, J.E. & Rundel, P.W. 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8: 683–690.Google Scholar
  117. Keeley, J.E. & Sandquist, D.R. 1992. Carbon: freshwater aquatics. Plant Cell Environ. 15: 1021–1035.Google Scholar
  118. Keeley, J.E., Osmond, C.B., & Raven, J.A. 1984. Stylites, a vascular land plant without stomata absorbs CO2via its roots. Nature 310: 694–695.Google Scholar
  119. Kirschbaum, M.U.F. & Pearcy, R.W. 1988. Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiol. 86: 782–785.PubMedCentralPubMedGoogle Scholar
  120. Kluge, M. & Ting, I.P 1978. Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer-Verlag, Berlin.Google Scholar
  121. Koch, K.E. & Kennedy, R.A. 1982. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. under natural environmental conditions. Plant Physiol. 69: 757–761.PubMedCentralPubMedGoogle Scholar
  122. Körner, C. & Larcher, W. 1988. Plant life in cold climates. Symp. Soc. Exp. Biol. 42: 25–57.PubMedGoogle Scholar
  123. Knight, J.D., Livingston, N.J., & Van Kessel, C. 1994. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions. Plant Cell Environ. 17: 173–179.Google Scholar
  124. Krall, J.P. & Edwards, G.E. 1992. Relationship between photosystem II activity and CO2 fixation. Physiol. Plant 86: 180–187.Google Scholar
  125. Krall, J.P., Edwards, G.E. and Andrea, C.S. 1989. Protection of pyruvate, Pi dikinase from maize against cold lability by compatible solutes. Plant Physiol. 89: 280–285.PubMedCentralPubMedGoogle Scholar
  126. Krause, G.H. & Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.Google Scholar
  127. Kropf, M. 1989. Quantification of SO2 effects on physiological processes, plant growth and crop production. PhD Thesis, Wageningen Agricultural University, The Netherlands.Google Scholar
  128. Kruger, I. & Kluge, M. 1987. Diurnal changes in the regulatory properties of phosphoenolpyruvate carboxylase in plants: Are alterations in the quaternary structure involved? Bot. Acta 101: 24–27.Google Scholar
  129. Külheim, C., Agren, J., & Jansson, S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93.PubMedGoogle Scholar
  130. Lake, J.A., Quick, W.P., Beerling, D.J., & Woodward, F.I. 2001. Plant development. Signals from mature to new leaves. Nature 411: 154.PubMedGoogle Scholar
  131. Lawlor, D.W. 1993. Photosynthesis; molecular, physiological and environmental processes. Longman, London.Google Scholar
  132. Leverenz, J.W. 1987. Chlorophyll content and the light response curve of shade adapted conifer needles. Physiol. Plant 71: 20–29.Google Scholar
  133. Li, X.-P., Phippard, A., Pasari, J., & Niyogi, K.K. 2002. Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29: 1131–1139.Google Scholar
  134. Lichtenthaler, H.K. 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179.PubMedGoogle Scholar
  135. Lichtenthaler, H.K. & Babani, F. 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Chlorophyll fluorescence: a signature of photosynthesis, G.C. Papageorgiou & Govindjee (eds.). Springer, Dordrecht, pp. 713–736.Google Scholar
  136. Logan, B.A., Barker, D.H., Demmig-Adams, B., & Adams III, W.W. 1996. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ. 19: 1083–1090.Google Scholar
  137. Long, S.P. & Bernacchi, C.J. 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 54: 2393–2401.PubMedGoogle Scholar
  138. Long, S.P. & Hällgren, J.E. 1993. Measurement of CO2 assimilation by plants in the field and the laboratory. In: Photosynthesis and production in a changing environment, D.O. Hall, J.M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood, & S.P. Long (eds.). Chapman and Hall, London, pp. 129–167.Google Scholar
  139. Long, S.P., Humphries, S., & Falkowski, P.G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633–662.Google Scholar
  140. Long, S.P., Ainsworth, E.A., Rogers, A., & Ort, D.R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55: 591–628.PubMedGoogle Scholar
  141. Maberly, S.C. & Madsen, T.V. 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct. Plant Biol. 29: 393–405.Google Scholar
  142. Madsen, T.V. & Baattrup-Pedersen, A. 1995. Regulation of growth and photosynthetic performance in Elodea canadensis in response to inorganic nitrogen. Funct. Ecol. 9: 239–247.Google Scholar
  143. Magnin, N.C., Cooley, B.A., Reiskind, J.B., & Bowes, G. 1997. Regulation and localization of key enzymes during the induction of Kranz-less, C4-type in Hydrilla verticillata. Plant Physiol. 115: 1681–1689.PubMedCentralPubMedGoogle Scholar
  144. Mansfield, T.A., Hetherington, A.M., & Atkinson, C.J. 1990. Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 55–75.Google Scholar
  145. Martin, B., Tauer, C.G., Lin, R.K. 1999. Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci. 39: 1775–1783.Google Scholar
  146. Mazen, A.M.A. 1996. Changes in levels of phosphoenolpyruvate carboxylase with induction of Crassulacean acid metabolism (CAM)-like behavior in the C4 plant Portulaca oleracea. Physiol. Plant. 98: 111–116.Google Scholar
  147. McConnaughey, T.A., LaBaugh, J.W., Rosenberry, D.O., Striegl, R.G., Reddy, M.M., & Schuster, P.F. 1994. Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol. Oceanogr. 39: 1319–1332.Google Scholar
  148. Medina, E. 1996. CAM and C4 plants in the humid tropics. In: Tropical forest plant ecophysiology, S.D. Mulkey, R.L. Chazdon, & A.P. Smith (eds.). Chapman & Hall, New York, pp. 56–88.Google Scholar
  149. Medina, E. & Klinge, H. 1983. Productivity of tropical woodlands. In: Encyclopedia or plant physiology, Vol. 12D, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 281–303.Google Scholar
  150. Meinzer, F., Goldstein, G., & Grantz, D.A. 1990. Carbon isotope discrimination in coffee genotypes grown under limited water supply. Plant Physiol. 92: 130–135.PubMedCentralPubMedGoogle Scholar
  151. Mommer, L., Pons, T.L., Wolters-Arts, M., Venema, J.H., & Visser, E.J.W. 2005. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol. 139: 497–508.PubMedCentralPubMedGoogle Scholar
  152. Monsi, M. & Saeki T. 1953. Über den Lichtfaktor in den Pflanzengesellschaften und sein Bedeutung für die Stoffproduktion. Jap. J. Bot. 14: 22–52.Google Scholar
  153. Monsi, M. & Saeki T. 2005. On the factor light in plant communities and its importance for matter production. Ann. Bot. 95: 549–567.PubMedGoogle Scholar
  154. Mooney, H.A. 1986. Photosynthesis. In: Plant ecology, M.J. Crawley (ed.). Blackwell Scientific Publications, Oxford. pp. 345–373.Google Scholar
  155. Morgan, C.L., Turner, S.R., & Rawsthorne, S. 1992. Cell-specific distribution of glycine decarboxylase in leaves of C3, C4 and C3–C4 intermediate species. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 339–343.Google Scholar
  156. Morgan, P.B., Ainsworth, E.A., & Long, S.P. 2003. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26: 1317–1328.Google Scholar
  157. Mott, K.A. & Buckley, T.N. 2000. Patchy stomatal conductance: emergent collective behaviour of stomata. Trends Plant Sci. 5: 1380–1385.Google Scholar
  158. Murchie, E.H. & Horton, P. 1997. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ. 20: 438–448.Google Scholar
  159. Nakano, Y. & Edwards, G.E. 1987. Hill reaction, hydrogen peroxide scavenging, and ascorbate peroxidase activity or mesophyll and bundle sheath chloroplasts or NADP-malic enzyme type C4 species. Plant Physiol. 85: 294–298.PubMedCentralPubMedGoogle Scholar
  160. Newman, J.R. & Raven, J.R. 1993. Carbonic anhydrase in Ranunculus penicillatus spp. pseudofluitans: activity, location and implications for carbon assimilation. Plant Cell Environ. 16: 491–500.Google Scholar
  161. Nielsen, S.L., Gacia, E., & Sand-Jensen, K. 1991. Land plants or amphibious Littorella uniflora (L.) Aschers. maintain utilization of CO2 from sediment. Oecologia 88: 258–262.Google Scholar
  162. Niinemets, Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant Cell. Environ. 30: 1052–1071.PubMedGoogle Scholar
  163. Nimmo, H.G., Fontaine, V., Hartwell, J., Jenkins, G.I., Nimmo, G.A., & Wilkins, M.B. 2001. PEP carboxylase kinase is a novel protein kinase controlled at the level of expression. New Phytol. 151: 91–97.Google Scholar
  164. Nishiyama, Y., Allakhverdiev, S.I., & Murata, N. 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757: 742–749.PubMedGoogle Scholar
  165. Nishio, J.N., Sun, J., & Vogelmann, T.C. 1993. Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5: 953–961.PubMedCentralPubMedGoogle Scholar
  166. Niyogi, K., Grossman, A.R., & Björkman, O. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134.PubMedCentralPubMedGoogle Scholar
  167. Nobel, P.S. & Hartsock, T.L. 1990. Diel patterns of CO2 exchange for epiphytic cacti differing in succulence. Physiol. Plant 78: 628–634.Google Scholar
  168. Nobel, P.S., Garcia-Moya, E., & Quero, E. 1992. High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ. 15: 329–335.Google Scholar
  169. Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., & Ceulemans, R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 22: 683–714.Google Scholar
  170. Ögren, E. 1993. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101: 1013–1019.PubMedCentralPubMedGoogle Scholar
  171. Ogren, W.L. 1984. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35: 415–442.Google Scholar
  172. Oguchi, R., Hikosaka, K., & Hirose, T. 2005. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ. 28: 916–927.Google Scholar
  173. O’Leary M.H. 1993. Biochemical basis of carbon isotope fractionation. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds.). Academic Press, San Diego, pp. 19–28.Google Scholar
  174. Öquist, G., Brunes, L., & Hällgren, J.E. 1982. Photosynthetic efficiency of Betula pendula acclimated to different quantum flux densities. Plant Cell Environ. 5: 9–15.Google Scholar
  175. Osmond, C.B. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Photoinhibition of photosynthesis from molecular mechanisms to the field, N.R. Baker & J.R. Bowyer (eds.). Bios Scientific Publishers, Oxford, pp. 1–24.Google Scholar
  176. Osmond, C.B. & Holtum, J.A.M. 1981. Crassulacean acid metabolism. In: The biochemistry of plants. A comprehensive treatise, Vol 8, P.K. Stumpf & E.E. Conn (eds.). Academic Press, New York.Google Scholar
  177. Osmond, C.B., Björkman, O., & Anderson, D.J. 1980. Physiological processes in plant ecology. Ecological studies, Vol 36. Springer-Verlag, Berlin.Google Scholar
  178. Osmond, C.B., Winter, K., & Ziegler, H. 1982. Functional significance of different pathways or CO2 fixation in photosynthesis. In: Encyclopedia or plant physiology, Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 479–548.Google Scholar
  179. Pascal, A.A., Liu, Z.F., Broess, K., Van Oort, B., Van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W.R., & Ruban, A. 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–137.PubMedGoogle Scholar
  180. Patel, A. & Ting, I.P. 1987. Relationship between respiration and CAM-cycling in Peperomia camptotricha. Plant Physiol. 84: 640–642.PubMedCentralPubMedGoogle Scholar
  181. Paul, M.J. & Foyer, C.H. 2001. Sink regulation of photosynthesis. J. Exp. Bot. 52: 1383–1400.PubMedGoogle Scholar
  182. Pearcy, R.W. 1977. Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 59: 795–799.PubMedCentralPubMedGoogle Scholar
  183. Pearcy, R.W. 1988. Photosynthetic utilisation of lightflecks by understorey plants. Aust. J. Plant Physiol. 15: 223–238.Google Scholar
  184. Pearcy, R.W. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 421–453.Google Scholar
  185. Pearcy, R.W., Osteryoung, K., & Calkin, H.W. 1985. Photosynthetic responses to dynamic light environments by Hawaiian trees. Time course of CO2 uptake and carbon gain during sunflecks. Plant Physiol. 79: 896–902.PubMedCentralPubMedGoogle Scholar
  186. Peisker, M. & Henderson, S.A. 1992. Carbon: terrestrial C4 plants. Plant Cell Environ. 15: 987–1004.Google Scholar
  187. Plaut, Z., Mayoral, M.L., & Reinhold, L. 1987. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves. Plant Physiol. 85: 786–791.PubMedCentralPubMedGoogle Scholar
  188. Pons, T.L. & Pearcy, R.W. 1992. Photosynthesis in flashing light in soybean leaves grown in different conditions. II. Lightfleck utilization efficiency. Plant Cell Environ. 15: 577–584.Google Scholar
  189. Pons, T.L. & Pearcy, R.W. 1994. Nitrogen reallocation and photosynthetic acclimation in response to partial shading in soybean plants. Physiol. Plant. 92: 636–644.Google Scholar
  190. Pons, T.L. & Welschen, R.A.M. 2002. Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ. 25: 1367–1372.Google Scholar
  191. Pons, T.L., Schieving, F., Hirose, T., & Werger, M.J.A. 1989. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds.). SPB Academic Publishing, The Hague, pp. 175–186.Google Scholar
  192. Pons, T.L., Van der Werf, A., & Lambers, H. 1994. Photosynthetic nitrogen use efficiency of inherently slow and fast-growing species: possible explanations for observed differences. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 61–77.Google Scholar
  193. Poot, P., Pilon, J., & Pons, T.L. 1996. Photosynthetic characteristics of leaves of male sterile and hermaphroditic sex types of Plantago lanceolata grown under conditions of contrasting nitrogen and light availabilities. Physiol. Plant. 98: 780–790.Google Scholar
  194. Portis, A. 2003. Rubisco activase – Rubisco’s catalytic chaperone. Photosynth. Res. 75: 11–27.PubMedGoogle Scholar
  195. Portis, A.R., Salvucci, M.E., & Ogren, W.L. 1986. Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol. 82: 967–971.PubMedCentralPubMedGoogle Scholar
  196. Potvin, C. 1986. Differences in photosynthetic characteristics among northern and southern C4 plants. Physiol. Plant. 69: 659–664.Google Scholar
  197. Prins, H.B.A. & Elzenga, J.T.M. 1989. Bicarbonate utilization: function and mechanism. Aquat. Bot. 34: 59–83.Google Scholar
  198. Pyankov, V.I. & Kondratchuk, A.V. 1995. Specific features of structural organization of photosynthetic apparatus of the East Pamirs plants. Proc. Russ. Acad. Sci. 344: 712–716.Google Scholar
  199. Pyankov, V.I. & Kondratchuk, A.V. 1998. Structure of the photosynthetic apparatus in woody plants from different ecological and altitudinal in Eastern Pamir. Russ. J. Plant Physiol. 45: 567–578.Google Scholar
  200. Prins, H.B.A. & de Guia, M.B. 1986. Carbon source of the water soldier, Stratiotes aloides L. Aquat. Bot. 26: 225–234.Google Scholar
  201. Quick, W.P., Chaves, M.M., Wendler, R., David, M., Rodrigues, M.L., Passaharinho, J.A., Pereira, J.S., Adcock, M.D., Leegood, R.C., & Stitt, M. 1992. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ. 15: 25–35.Google Scholar
  202. Rajendrudu, G., Prasad, J.S.R., & Das, V.S.R. 1986. C3 C4-intermediate species in Alternanthera (Amaranthaceae). Leaf anatomy, CO2 compensation point, net CO2 exchange and activities or photosynthetic enzymes. Plant Physiol. 80: 409–414.PubMedCentralPubMedGoogle Scholar
  203. Raymo, M.E. & Ruddiman, W.F. 1992. Tectonic forcing of late Cenozoic climate. Nature 359: 117–122.Google Scholar
  204. Reich, P.B. & Schoettle, A.W. 1988. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77: 25–33.Google Scholar
  205. Reich, P.B., Walters, M.B., & Ellsworth, D.S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94: 13730–13734.PubMedCentralPubMedGoogle Scholar
  206. Reinfelder, J.R., Kraepiel, A.M.L., & Morel, F.M.M. 2000. Unicellular C-4 photosynthesis in a marine diatom. Nature 407: 996–999.PubMedGoogle Scholar
  207. Reiskind, J.B., Madsen, T.V., Van Ginkel, L.C., & Bowes, G. 1997. Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ. 20: 211–220.Google Scholar
  208. Rodeghiero, M., Niinemets, Ü. & Cescatti, A. 2007. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ. 30: 1006–1022.PubMedGoogle Scholar
  209. Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Raines, C.A., & Long, S.P. 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2enrichment. Plant Physiol. 118: 683–689.PubMedCentralPubMedGoogle Scholar
  210. Rolland, F., Moore, B., & Sheen, J. 2002. Sugar sensing and signaling in plants. Plant Cell 14: S185–S205.PubMedCentralPubMedGoogle Scholar
  211. Rolland, F., Baena-Gonzalez, E., & Sheen, J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 57: 675–709.PubMedGoogle Scholar
  212. Rühle, W. & Wild, A. 1979. Measurements of cytochrome f and P-700 in intact leaves of Sinapis alba grown under high-light and low-light conditions. Planta 146: 377–385.PubMedGoogle Scholar
  213. Rundel, P.W. & Sharifi, M.R. 1993. Carbon isotope discrimination and resource availability in the desert shrub Larrea tridentata. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds.). Academic Press, San Diego, pp. 173–185.Google Scholar
  214. Sage, R.F. 2002. C-4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends Plant Sci. 7: 283–285.PubMedGoogle Scholar
  215. Sage, R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341–370.Google Scholar
  216. Sage, R.F. & Kubien, D. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77: 209–225.PubMedGoogle Scholar
  217. Sage, R.F. & Sharkey, T.D. 1987. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol. 84: 658–664.PubMedCentralPubMedGoogle Scholar
  218. Sage, R.F. & Pearcy, R.W. 1987a. The nitrogen use efficiency or C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84: 954–958.Google Scholar
  219. Sage, R.F. & Pearcy, R.W. 1987b. The nitrogen use efficiency or C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics or Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84: 959–963.Google Scholar
  220. Sage, R.F., Sharkey, T.D., & Seemann J.R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.PubMedCentralPubMedGoogle Scholar
  221. Salvucci, M.E. 1989. Regulation of Rubisco activity in vivo. Physiol. Plant. 77: 164–171.Google Scholar
  222. Salvucci, M.E. & Crafts-Brandner, S.J. 2004a. Mechanism for deactivation of Rubisco under moderate heat stress. Physiol. Plant. 122: 513–519.Google Scholar
  223. Salvucci, M.E. & Crafts-Brandner, S.J. 2004b. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134: 1460–1470.Google Scholar
  224. Sassenrath-Cole, G.F., Pearcy, R.W., & Steinmaus, S. 1994. The role of enzyme activation state in limiting carbon assimilation under variable light conditions. Photosynth. Res. 41: 295–302.PubMedGoogle Scholar
  225. Schreiber, U, Bilger, W., & Neubauer, C. 1995. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds.). Springer-Verlag, Berlin, pp. 49–70.Google Scholar
  226. Schulze, E.-D., Kelliher, F.M., Körner, C., Lloyd, J., & Leuning, R. 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25: 629–660.Google Scholar
  227. Seemann, J.R. 1989. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants. Plant Physiol. 91: 379–386.PubMedCentralPubMedGoogle Scholar
  228. Seemann, J.R., Badger, M.R., & Berry, J.A. 1984. Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol. 74: 791–794.PubMedCentralPubMedGoogle Scholar
  229. Sharkey, T.D. 2005. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 28: 269–277.Google Scholar
  230. Sharkey, T.D., Seemann, J.R., & Pearcy, R.W. 1986a. Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol. 82: 1063–1068.Google Scholar
  231. Sharkey, T.D., Stitt, M., Heineke, D., Gerhardt, R., Raschke, K., & Heldt, H.W. 1986b. Limitation of photosynthesis by carbon metabolism. II. CO2-insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol. 81: 1123–1129.Google Scholar
  232. Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., & Singsaas, E.L. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30: 1035–1040.PubMedGoogle Scholar
  233. Sims, D.A. & Pearcy, R.W. 1989. Photosynthetic characteristics of a tropical forest understorey herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta, grown in contrasting light environments. Oecologia 79: 53–59.Google Scholar
  234. Smedley, M.P., Dawson, T.E., Comstock, J.P., Donovan, L.A., Sherrill, D.E., Cook, C.S., & Ehleringer, J.R. 1991. Seasonal carbon isotope discrimination in a grassland community. Oecologia 85: 314–320.Google Scholar
  235. Smeekens, S. 2000. Sugar induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81.PubMedGoogle Scholar
  236. Smeekens, S. & Rook, F. 1998. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol. 115: 7–13.Google Scholar
  237. Smith, H., Samson, G., & Fork, D.C. 1993. Photosynthetic acclimation to shade: Probing the role of phytochromes using photomorphogenetic mutants of tomato. Plant Cell Environ. 16: 929–937.Google Scholar
  238. Staiger, C.J., Gibbon, B.C., Kovar, D.R., & Zonia, L.E. 1997. Profilin and actin-depolymerizing facor: Modulators of actin organization in plants. Trends Plant Sci. 2: 275–281.Google Scholar
  239. Sternberg, L.O., DeNiro, M.J., & Johnson, H.B. 1984. Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 74: 557–561.PubMedCentralPubMedGoogle Scholar
  240. Stitt, M. & Hurry, V. 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5: 199–206.PubMedGoogle Scholar
  241. Surridge, C. 2002. Agricultural biotech: the rice squad. Nature 416: 576–578.PubMedGoogle Scholar
  242. Tans, P. 2007. NOAA/ESRL (
  243. Terashima, I. & Hikosaka, K. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18: 1111–1128.Google Scholar
  244. Terashima, I., Wong, S.C., Osmond, C.B., & Farquhar, G.D. 1988. Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol. 29: 385–394.Google Scholar
  245. Terashima, I., Miyazawa, S.-I., & Hanba, Y.T. 2001. Why are sun leaves thicker than shade leaves? – Consideration based on analyses of CO2 diffusion in the leaf. J. Plant Res. 114: 93–105.Google Scholar
  246. Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P., & Yano, S. 2006. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57: 343–354.PubMedGoogle Scholar
  247. Ueno, O. 2001. Environmental regulation of C3and C4differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol. 127: 1524–1532.PubMedCentralPubMedGoogle Scholar
  248. Ueno, O., Samejima, M., Muto, S., Miyachi, S. 1988. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: expression of C4and C3 modes in contrasting environments. Proc. Natl. Acad. Sci. USA 85: 6733–6737.PubMedCentralPubMedGoogle Scholar
  249. Van Oosten, J.-J. & Besford, R.T. 1995. Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant Cell Environ. 18: 1253–1266.Google Scholar
  250. Van Oosten, J.J., Wilkins, D., & Besford, R.T. 1995. Acclimation of tomato to different carbon dioxide concentrations. Relationships between biochemistry and gas exchange during leaf development. New Phytol. 130: 357–367.Google Scholar
  251. Vernon, D.M., Ostrem, J.A., Schmitt, J.M., & Bohnert, H. 1988. PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol. 86: 1002–1004.PubMedCentralPubMedGoogle Scholar
  252. Vogel, J.C., Fuls, A., & Ellis, R.P. 1978. The geographical distribution of Kranz grasses in South Africa. S. Afr. J. Sci. 74: 209–215.Google Scholar
  253. Vogelmann, T.C. 1993. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 231–251.Google Scholar
  254. Vogelmann, T.C. & Evans, J.R. 2002. Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ. 25: 1313–1323.Google Scholar
  255. Vogelmann, T.C., Nishio, J.N., & Smith, W.K. 1996. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1: 65–70.Google Scholar
  256. Von Caemmerer, S. 1989. A model of photosynthetic CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates. Planta 178: 463–474.Google Scholar
  257. Von Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood.Google Scholar
  258. Von Caemmerer, S. & Farquhar, G.D. 1981. Some relationships between biochemistry of photosynthesis and gas exchange of leaves. Planta 153: 376–387.Google Scholar
  259. Von Caemmerer, S. & Farquhar, G.D. 1984. Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p(CO2) on photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160: 320–329.Google Scholar
  260. Von Caemmerer, S., Evans, J.R., Hudson, G.S., & Andrews, T.J. 1994. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97.Google Scholar
  261. Wakabayashi, K. & Böger, P. 2002. Target sites for herbicides: entering the 21st century. Pest Manage. Sci. 58: 1149–1154.Google Scholar
  262. Walters, R.G. 2005. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56: 435–447.PubMedGoogle Scholar
  263. Walters, R.G., Rogers, J.J.M., Shephard, F., & Horton, P. 1999. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209: 517–527.PubMedGoogle Scholar
  264. Wand, S.J.E., Midgley, G.F., Jones, M.H., & Curtis, P.S. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol. 5: 723–741.Google Scholar
  265. Warren, C.R. 2007. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J. Exp. Bot. in press.Google Scholar
  266. Warren, C.R. & Adams, M.A. 2006. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 29: 192–201.PubMedGoogle Scholar
  267. Warren, C.R., Low, M., Matysek, R., & Tausz, M. 2007. Internal conductance to CO2transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ. Exp. Bot. 59: 130–138.Google Scholar
  268. Weger, H.G., Silim, S.N., & Guy, R.D. 1993. Photosynthetic acclimation to low temperature by western red cedar seedlings. Plant Cell Environ. 16: 711–717.Google Scholar
  269. Weston, D.J., Bauerle, W.L., Swire-Clark, G.A., Moore, Bd., & Baird, W.V. 2007. Characterization of Rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae). Am. J. Bot. 94: 926–934.PubMedGoogle Scholar
  270. Willeford, K.O. & Wedding, R.T. 1987. pH effects on the activity and regulation of the NAD malic enzyme. Plant Physiol. 84: 1080–1083.Google Scholar
  271. Winter, K. & Smith, J.A.C. 1996. An introduction to crassulaceaen acid metabolism. Biochemical principles and ecological diversity. In: Crassulacean acid metabolism, biochemistry, ecophysiology and evolution. Ecological studies 114, K. Winter & J.A.C. Smith (eds.). Springer-Verlag, Berlin, pp. 1–13.Google Scholar
  272. Winter, K., Zotz, G., Baur, B., & Dietz, K.-J. 1992. Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91: 47–51.Google Scholar
  273. Wright, G.C., Hubick,.K.T., & Farquhar, G.D. 1988. Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field-grown peanut cultivars. Aust. J. Plant Physiol. 15: 815–825.Google Scholar
  274. Wright, I.J., Reich, P.B., & Westoby, M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15: 423–434.Google Scholar
  275. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.PubMedGoogle Scholar
  276. Wu, M.-.X & Wedding, R.T. 1987. Temperature effects on phosphoenolpyruvate carboxylase from a CAM and a C4plant: a comparative study. Plant Physiol. 85: 497–501.PubMedCentralPubMedGoogle Scholar
  277. Wullschleger, S.D. Tschaplinski, T.J., & Norby, R.J. 2002. Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ. 25: 319–331.PubMedGoogle Scholar
  278. Yamori, W., Noguchi, K., & Terashima, I. 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ. 28: 536–547.Google Scholar
  279. Yamori, W., Noguchi, K., Hanba, Y.T., & Terashima, I. 2006a. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Physiol. 47: 1069–1080.Google Scholar
  280. Yamori, W., Suzuki, K., Noguchi, K., Nakai, M., & Terashima, I. 2006b. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ. 29: 1659–1670.Google Scholar
  281. Yano, S. & Terashima, I. 2001. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation on Chenopodium album. Plant Cell Physiol. 41: 1303–1310.Google Scholar
  282. Yeoh, H.-H., Badger, M.R., & Watson, L. 1981. Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylase among plants. Plant Physiol. 67: 1151–1155.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations