Skip to main content

Abstract

Approximately 40% of a plant’s dry mass consists of carbon, fixed in photosynthesis. This process is vital for growth and survival of virtually all plants during the major part of their growth cycle. In fact, life on Earth in general, not just that of plants, totally depends on current and/or past photosynthetic activity. Leaves are beautifully specialized organs that enable plants to intercept light necessary for photosynthesis. The light is captured by a large array of chloroplasts that are in close proximity to air and not too far away from vascular tissue, which supplies water and exports the products of photosynthesis. In most plants, CO2 uptake occurs through leaf pores, the stomata, which are able to rapidly change their aperture (Sect. 5.4 of Chapter 3 on plant water relations). Once inside the leaf, CO2 diffuses from the intercellular air spaces to the sites of carboxylation in the chloroplast (C3 species) or in the cytosol (C4 and CAM species).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams III, W.W., Demmig-Adams, B., Logan, B.A., Barker, D.H., & Osmond, C.B. 1999. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ. 22: 125–136.

    Google Scholar 

  • Allen, M.T. & Pearcy, R.W. 2000. Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122: 470–478.

    Google Scholar 

  • Atkin, O.K., Scheurwater, I., & Pons, T.L. 2006. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Change Biol. 12: 500–515.

    Google Scholar 

  • Bailey, S., Walters, R.G., Jansson, S., & Horton, P. 2001. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801.

    CAS  PubMed  Google Scholar 

  • Bastide, B., Sipes, D., Hann, J., & Ting, I.P. 1993. Effect of severe water stress on aspects of crassulacean acid metabolism in Xerosicyos. Plant Physiol. 103: 1089–1096.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beerling, D.J. & Osborne, C.P. 2006. The origin of the savanna biome. Global Change Biol. 12: 2023–2031.

    Google Scholar 

  • Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr., A.R., & Long, S.P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24: 253–259.

    CAS  Google Scholar 

  • Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr., A.R., & Long, S.P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24: 253–259.

    CAS  Google Scholar 

  • Bernacchi, C.J., Portis, A.R., Nakano, H., Von Caemmerer, S., & Long, S.P. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130: 1992-1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berry, J.A. & Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31: 491–543.

    Google Scholar 

  • Berry, J.A. & Raison, J.K. 1981. Responses of macrophytes to temperature. In: Encyclopedia of plant physiology, Vol 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 277–338.

    Google Scholar 

  • Bolhàr-Nordenkampf, H.R. & Öquist, G. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In: Photosynthesis and production in a changing environment, D.O. Hall, J.M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood, & S.P. Long (eds.). Chapman & Hall, London, pp. 193–206.

    Google Scholar 

  • Boonman, A., Prinsen, E., Gilmer, F., Schurr, U., Peeters, A.J.M., Voesenek, L.A.C.J., & Pons, T.L. 2007. Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143: 1841–1852.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowes, G. & Salvucci, M.E. 1989. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot. 34: 233–286.

    CAS  Google Scholar 

  • Bowes, G., Rao, S.K., Estavillo, G.M., & Reiskind, J.B. 2002. C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct. Plant Biol. 29: 379–392.

    CAS  Google Scholar 

  • Brown, R. & Bouton, J.H. 1993. Physiology and genetics of interspecific hybrids between photosynthetic types. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 435–456.

    Google Scholar 

  • Brown, R.H. & Hattersley, P.W. 1989. Leaf anatomy of C3–C4 species as related to evolution of C4 photosynthesis. Plant Physiol. 91: 1543–1550.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brugnoli, E. & Björkman, O. 1992. Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth. Res. 32: 23–35.

    CAS  PubMed  Google Scholar 

  • Brugnoli, E. & Lauteri, M. 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon-isotope fractionation of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95: 628–635.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchmann, N., Guehl, J.M., Barigah, T.S., & Ehleringer, J.R. 1997. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an amazonian rain forest (French Guiana). Oecologia 110: 120–131.

    Google Scholar 

  • Bunce, J.A. 2004. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140: 1–10.

    PubMed  Google Scholar 

  • Canadell, J.G., Pataki, D.E., Gifford, R., Houghton, R.A., Luo, Y., Raupach, M.R., Smith, P., & Steffen. W. 2007. Saturation of the terrestrial carbon sink. In: Terrestrial ecosystems in a changing world, J.G. Canadell, D. Pataki, & L. Pitelka (eds.). Springer, Berlin, pp. 59–78.

    Google Scholar 

  • Cavagnaro, J.B. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76: 273–277.

    Google Scholar 

  • Cen, Y.-P. & Sage, R.F. 2005. The regulation of ribulose-1,5-bisphosphate carboxylase activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol. 139: 1–12.

    Google Scholar 

  • Cerling, T.E., Harris, J.H., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., & Ehleringer, J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.

    CAS  Google Scholar 

  • Chazdon, R.L. & Pearcy, R.W. 1986. Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69: 517–523.

    Google Scholar 

  • Chazdon, R.L. & Pearcy, R.W. 1991. The importance of sunflecks for forest understory plants.BioSciences 41: 760–766.

    Google Scholar 

  • Chow, W.S. 2003. Photosynthesis: from natural towards artificial. J. Biol. Phys. 29: 447–459.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow, W.S., Hope, A.B., & Anderson, J.M. 1989. Oxygen per flash from leaf disks quantifies photosystem II. Biochim. Biophys. Acta 973: 105–108.

    CAS  Google Scholar 

  • Christie, E.K. & Detling, J.K. 1982. Analysis of interference between C3 and C4 grasses in relation to temperature and soil nitrogen supply. Ecology 63: 1277–1284.

    Google Scholar 

  • Christmann, A., Hoffmann, T., Teplova, I., Grill, E., & Müller, A. 2005. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 137: 209–219.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coté, F.X., André, M., Folliot, M., Massimino, D., & Daguenet, A. 1989. CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. determination or total and malate-decarboxylation-dependent CO2-assimilation rates; study of light O2-uptake. Plant Physiol. 89: 61–68.

    PubMed Central  PubMed  Google Scholar 

  • Coupe, S.A., Palmer, B.G., Lake, J.A., Overy, S.A., Oxborough, K., Woodward, F.I., Gray, J.E., & Quick, W.P. 2006 Systemic signalling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 57: 329–341.

    CAS  PubMed  Google Scholar 

  • Cui, M. & Nobel, P.S. 1994. Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ. 17: 935–944.

    CAS  Google Scholar 

  • DeLucia, E.H., Nelson, K., Vogelmann, T.C., & Smith, W.K. 1996. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ. 19: 159–170.

    Google Scholar 

  • Demmig-Adams, B. & Adams III, W.W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21–26.

    Google Scholar 

  • Demmig-Adams, B. & Adams III, W.W. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172: 11–21.

    CAS  PubMed  Google Scholar 

  • DeRidder, B.P. & Salvucci, M.E. 2007. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Sci. 172: 246–254.

    CAS  Google Scholar 

  • Downton, W.J.S., Loveys, B.R., & Grant, W.J.R. 1988. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol. 108: 263–266.

    CAS  Google Scholar 

  • Drennan, P.M. & Nobel, P.S. 2000. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23: 767–781.

    CAS  Google Scholar 

  • Eckstein, J., Beyschlag, W., Mott, K.A., & Ryell, R.J. 1996. Changes in photon flux can induce stomatal patchiness. Plant Cell. Environ. 19: 1066–1074.

    Google Scholar 

  • Ehleringer, J., & Björkman, O. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2, and O2concentration. Plant Physiol. 59: 86–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehleringer, J.R. & Monson, R. K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24: 411–439.

    Google Scholar 

  • Ehleringer, J., Björkman, O., & Mooney, H.A. 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192: 376–377.

    CAS  PubMed  Google Scholar 

  • Ehleringer, J.R., Schulze, E.-D., Ziegler, H., Lange, O.L., Farquhar, G.D., & Cowan, I.R. 1985. Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481.

    CAS  PubMed  Google Scholar 

  • Eller, B.M. & Ferrari, S. 1997. Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant Cell Environ. 20: 93–100.

    CAS  Google Scholar 

  • Ellis, R.P. 1977. Distribution of the Kranz syndrome in the Southern African Eragrostoideae and the Panicoideae according to bundle sheath anatomy and cytology. Agroplantae 9: 73–110.

    Google Scholar 

  • Ellis, R.P., Vogel, J.C., & Fuls, A. 1980. Photosynthetic pathways and the geographical distribution of grasses in south west Africa/Namibia. S. Afr. J. Sci. 76: 307–314.

    Google Scholar 

  • Elzenga, J.T.M. & Prins, H.B.A. 1988. Adaptation of Elodea and Potamogeton to different inorganic carbon levels and the mechanism for photosynthetic bicarbonate utilisation. Aust. J. Plant Physiol. 15: 727–735.

    Google Scholar 

  • Elzenga, J.T.M. & Prins, H.B.A. 1989. Light-induced polar pH changes in leaves of Elodea canadensis. I. Effects of carbon concentration and light intensity. Plant Physiol. 91: 62–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ethier, G.J. & Livingston, N.J. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 27: 137–153.

    CAS  Google Scholar 

  • Evans, J.R. 1988. Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Aust. J. Plant Physiol. 15: 93–106.

    CAS  Google Scholar 

  • Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Google Scholar 

  • Evans, J.R. 1995. Carbon fixation profiles do reflect light absorption profiles in leaves. Aust. J. Plant Physiol. 22: 865–873.

    CAS  Google Scholar 

  • Evans, J.R. & Loreto, F. 2000. Acquisition and diffusion of CO2in higher plant leaves. In: Photosynthesis: physiology and metabolism, R.C. Leegood, T.D.Sharkey, & S. Von Caemmerer (eds.). Kluwer Academic Publishers, Dordrecht, pp. 321–351.

    Google Scholar 

  • Evans, J.R. & Seemann, J.R. 1989. The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Photosynthesis, W.R. Briggs (ed.). Alan Liss, New York.

    Google Scholar 

  • Evans, J.R. & Vogelmann, T.C. 2003. Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ. 26: 547–560.

    CAS  Google Scholar 

  • Evans, J.R. & Von Caemmerer, S. 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110: 339–346.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, J.R., Sharkey, T.D., Berry, J.A., & Farquhar, G.D. 1986. Carbon isotope discrimination measured with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust. J. Plant Physiol. 13: 281–292.

    CAS  Google Scholar 

  • Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290: 291–296.

    CAS  PubMed  Google Scholar 

  • Farmer, A.M. 1996. Carbon uptake by roots. In: Plant roots: the hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds.). Marcel Dekker, Inc., New York, pp. 679–687.

    Google Scholar 

  • Farquhar, G.D. & Richards, R.A. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552.

    CAS  Google Scholar 

  • Farquhar, G.D., Von Caemmerer, S., & Berry, J.A. 1980. A biochemical model of photosynthetic CO2assimilation in leaves of C3 species. Planta 149: 78–90.

    CAS  PubMed  Google Scholar 

  • Farquhar, G.D., O’Leary, M.H., & Berry, J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 131–137.

    Google Scholar 

  • Field, C.B., Ball, T., & Berry, J.A. 1989. Photosynthesis: principles and field techniques. In: Plant physiological ecology; field methods and instrumentation, R.W. Pearcy, J.R. Ehleringer, H.A. Mooney, & P.W. Rundel (eds.). Chapman and Hall, London, pp. 209–253.

    Google Scholar 

  • Feild, T.S., Lee, D.W., & Holbrook, N.M. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127: 566–574.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flanagan, L.B. & Jefferies, R.L. 1989. Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity. Plant Cell Environ. 12: 559–568.

    Google Scholar 

  • Flexas, J. & Medrano, H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89: 183–189.

    CAS  PubMed  Google Scholar 

  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey T.D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6: 269–279.

    CAS  PubMed  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Hanson, D.T., Bota J., Otto, B., Cifre, J., McDowell, N., Medrano, H., & Kaldenhoff, R. 2006a. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48: 427–439.

    CAS  Google Scholar 

  • Flexas, J., Bota, J., Galmés, J., Medrano, H., & Ribas-Carbó, M. 2006b. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant. 127: 343–352.

    CAS  Google Scholar 

  • Flexas, J., Diaz-Espejo, Galmés, J., Kaldenhoff, R., Medrano, H. & Ribas-Carbó, M. 2007a. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30: 1284–1298.

    CAS  Google Scholar 

  • Flexas, J., Diaz-Espejo, A., Berry, J.A., Cifre, J., Galmés, J., Kaidenhoff, R., Medrano, H. & Ribas-Carbo, M. 2007b. Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J. Exp. Bot. 58: 1533–1543.

    CAS  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., & Medrano, H. 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. In press.

    Google Scholar 

  • Flügge, U.I., Stitt, M., & Heldt, H.W. 1985. Light-driven uptake or pyruvate into mesophyll chloroplasts from maize. FEBS Lett. 183: 335–339.

    Google Scholar 

  • Fredeen, A.L., Gamon, J.A., & Field, C.B. 1991. Responses of photosynthesis and carbohydrate partitioning to limitations in nitrogen and water availability in field grown sunflower. Plant Cell Environ. 14: 969–970.

    Google Scholar 

  • Galmés, J., Flexas, J., Keys, A.J., Cifre, J., Mitchell, R.A.C., Madgwick, P.J., Haslam R.P., Medrano, H., & Parry, M.A.J. 2005. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ. 28: 571–579.

    Google Scholar 

  • Galmés, J., Medrano, H., & Flexas, J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 175: 81–93.

    PubMed  Google Scholar 

  • Genty, B., Briantais, J.-M., & Baker, N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.

    CAS  Google Scholar 

  • Ghannoum, O., Evans, J.R., Chow, W.S., Andrews, T.J., Conroy, J.P., & Von Caemmerer, S. 2005. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-Malic enzyme C4 grasses. Plant Physiol. 137: 638–650.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillon, J.S. & Yakir, D. 2000. Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol. 123: 201–214.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant 99: 197–209.

    CAS  Google Scholar 

  • Goldschmidt, E.E. & Huber, S.C. 1992. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 99: 1443–1448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gornic, G., Le Gouallec, J.-L., Briantais, J.M., & Hodges, M. 1989. Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostoma repens (Lour) Hall f.). Planta 177: 84–90.

    Google Scholar 

  • Grace, J. 2004. Understanding and managing the global carbon cycle. J. Ecol. 92: 189–202.

    CAS  Google Scholar 

  • Grams, E.E., Koziolek, C., Lautner, S., Matyssek, R., & Fromm, J. 2007. Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ. 30: 79–84.

    PubMed  Google Scholar 

  • Grassi, G. & Magnani, F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28: 834–849.

    CAS  Google Scholar 

  • Gunasekera, D. & Berkowitz, G.A. 1992. Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon. Plant Physiol. 98: 660–665.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guy, R.D., Fogel, M.L., & Berry, J.A. 1993. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101: 37–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson, H.C. 1917. Leaf structure as related to environment. Am. J. Bot. 4: 533–560.

    Google Scholar 

  • Harris, F.S. & Martin, C.E. 1991. Correlation between CAM-cycling and photosynthetic gas exchange in five species of (Talinum) (Portulacaceae) Plant Physiol. 96: 1118–1124.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch, M.D. & Carnal, N.W. 1992. The role of mitochondria in C4 photosynthesis. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 135–148.

    Google Scholar 

  • Hatch, M.D. & Slack, C.R. 1966. Photosynthesis by sugar cane leaves A new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101: 103–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch, M.D. & Slack, C.R. 1998. C4 photosynthesis: discovery, resolution, recognition, and significance. In: Discoveries in plant biology, S.-Y. Yang & S.-D. Kung (eds.). World Scientific Publishing, Hong Kong, pp. 175–196.

    Google Scholar 

  • Hattersley, P.W. 1983. The distribution or C3 and C4 grasses in Australia in relation to climate. Oecologia 57: 113–128.

    Google Scholar 

  • Henderson, S.A., Von Caemmerer, S., & Farquhar, G.D. 1992. Short-term measurements of carbon isotope discrimination in several C4 species. Aust. J. Plant Physiol. 19: 263–285.

    CAS  Google Scholar 

  • Henderson, S, Hattersley, P., Von Caemmerer, S & Osmond, C.B. 1995. Are C4 pathway plants threatened by global climatic change? In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds.). Springer-Verlag, Berlin, pp. 529–549.

    Google Scholar 

  • Hibberd, J.M. & Quick, W.P. 2002. Xharacteristics of C4 photosynthesis in stms and ptioes of C3 flowering plants. Nature 415: 451–454.

    CAS  PubMed  Google Scholar 

  • Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57: 291–302.

    CAS  PubMed  Google Scholar 

  • Holbrook, N.M., Shashidhar, V.R., James, R.A., & Munns, R. 2002. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J. Exp. Bot. 53: 1503–1514.

    CAS  PubMed  Google Scholar 

  • Houghton, R.A. 2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35: 313–347.

    CAS  Google Scholar 

  • Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., Freeman, K.H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3and C4 plant abundance. Science 293: 1647–1651.

    CAS  PubMed  Google Scholar 

  • Hubick, K. 1990. Effects of nitrogen source and water limitation on growth, transpiration efficiency and carbon-isotope discrimination in peanut cultivars. Aust. J. Plant Physiol. 17: 413–430.

    CAS  Google Scholar 

  • Hubick, K. & Farquhar, G.D. 1989. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant Cell Environ. 12: 795–804.

    Google Scholar 

  • Huner, N.P.A., Öquist, G., & Sarhan, F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3: 224–230.

    Google Scholar 

  • Hungate, B.A., Reichstein, M., Dijkstra, P., Johnson, D., Hymus, G., Tenhunen, J. D., Hinkle, C.R., & Drake, B.G. 2002. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biol. 8: 289–298.

    Google Scholar 

  • Jahnke, S. & Pieruschka, R. 2006. Air pressure in clamp-on leaf chambers: a neglected issue in gas exchange measurements. J. Exp. Bot. 57: 2553–2561.

    CAS  PubMed  Google Scholar 

  • Johnson, G.N., Young, A.J., Scholes, J.D., & Horton, P. 1993a. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16: 673–679.

    CAS  Google Scholar 

  • Johnson, G.N., Scholes, J.D., Horton, P., & Young, A.J. 1993b. Relationship between carotenoid composition and growth habit in British plant species. Plant Cell Environ. 16: 681–686.

    CAS  Google Scholar 

  • Jones, P.G., Lloyd, J.C., & Raines, C.A. 1996. Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes. Plant Cell Environ. 19: 231–236.

    CAS  Google Scholar 

  • Jordan, D.B. & Ogren, W.L. 1981. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161: 308–313.

    Google Scholar 

  • Kalisz, S. & Teeri, J.A. 1986. Population-level variation in photosynthetic metabolism and growth in Sedum wrightii. Ecology 67: 20–26.

    Google Scholar 

  • Kao, W.-Y. & Forseth, I.N. 1992. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.

    CAS  Google Scholar 

  • Keeley, J.E. 1990. Photosynthetic pathways in freshwater aquatic plants. Trends Ecol. Evol. 5: 330–333.

    CAS  PubMed  Google Scholar 

  • Keeley, J.E. & Busch, G. 1984. Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiol. 76: 525–530.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keeley, J.E. & Rundel, P.W. 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8: 683–690.

    Google Scholar 

  • Keeley, J.E. & Sandquist, D.R. 1992. Carbon: freshwater aquatics. Plant Cell Environ. 15: 1021–1035.

    CAS  Google Scholar 

  • Keeley, J.E., Osmond, C.B., & Raven, J.A. 1984. Stylites, a vascular land plant without stomata absorbs CO2via its roots. Nature 310: 694–695.

    CAS  Google Scholar 

  • Kirschbaum, M.U.F. & Pearcy, R.W. 1988. Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiol. 86: 782–785.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluge, M. & Ting, I.P 1978. Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer-Verlag, Berlin.

    Google Scholar 

  • Koch, K.E. & Kennedy, R.A. 1982. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. under natural environmental conditions. Plant Physiol. 69: 757–761.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Körner, C. & Larcher, W. 1988. Plant life in cold climates. Symp. Soc. Exp. Biol. 42: 25–57.

    PubMed  Google Scholar 

  • Knight, J.D., Livingston, N.J., & Van Kessel, C. 1994. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions. Plant Cell Environ. 17: 173–179.

    Google Scholar 

  • Krall, J.P. & Edwards, G.E. 1992. Relationship between photosystem II activity and CO2 fixation. Physiol. Plant 86: 180–187.

    CAS  Google Scholar 

  • Krall, J.P., Edwards, G.E. and Andrea, C.S. 1989. Protection of pyruvate, Pi dikinase from maize against cold lability by compatible solutes. Plant Physiol. 89: 280–285.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krause, G.H. & Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.

    CAS  Google Scholar 

  • Kropf, M. 1989. Quantification of SO2 effects on physiological processes, plant growth and crop production. PhD Thesis, Wageningen Agricultural University, The Netherlands.

    Google Scholar 

  • Kruger, I. & Kluge, M. 1987. Diurnal changes in the regulatory properties of phosphoenolpyruvate carboxylase in plants: Are alterations in the quaternary structure involved? Bot. Acta 101: 24–27.

    Google Scholar 

  • Külheim, C., Agren, J., & Jansson, S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93.

    PubMed  Google Scholar 

  • Lake, J.A., Quick, W.P., Beerling, D.J., & Woodward, F.I. 2001. Plant development. Signals from mature to new leaves. Nature 411: 154.

    CAS  PubMed  Google Scholar 

  • Lawlor, D.W. 1993. Photosynthesis; molecular, physiological and environmental processes. Longman, London.

    Google Scholar 

  • Leverenz, J.W. 1987. Chlorophyll content and the light response curve of shade adapted conifer needles. Physiol. Plant 71: 20–29.

    CAS  Google Scholar 

  • Li, X.-P., Phippard, A., Pasari, J., & Niyogi, K.K. 2002. Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29: 1131–1139.

    Google Scholar 

  • Lichtenthaler, H.K. 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179.

    CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K. & Babani, F. 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Chlorophyll fluorescence: a signature of photosynthesis, G.C. Papageorgiou & Govindjee (eds.). Springer, Dordrecht, pp. 713–736.

    Google Scholar 

  • Logan, B.A., Barker, D.H., Demmig-Adams, B., & Adams III, W.W. 1996. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ. 19: 1083–1090.

    CAS  Google Scholar 

  • Long, S.P. & Bernacchi, C.J. 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 54: 2393–2401.

    CAS  PubMed  Google Scholar 

  • Long, S.P. & Hällgren, J.E. 1993. Measurement of CO2 assimilation by plants in the field and the laboratory. In: Photosynthesis and production in a changing environment, D.O. Hall, J.M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood, & S.P. Long (eds.). Chapman and Hall, London, pp. 129–167.

    Google Scholar 

  • Long, S.P., Humphries, S., & Falkowski, P.G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633–662.

    CAS  Google Scholar 

  • Long, S.P., Ainsworth, E.A., Rogers, A., & Ort, D.R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55: 591–628.

    CAS  PubMed  Google Scholar 

  • Maberly, S.C. & Madsen, T.V. 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct. Plant Biol. 29: 393–405.

    CAS  Google Scholar 

  • Madsen, T.V. & Baattrup-Pedersen, A. 1995. Regulation of growth and photosynthetic performance in Elodea canadensis in response to inorganic nitrogen. Funct. Ecol. 9: 239–247.

    Google Scholar 

  • Magnin, N.C., Cooley, B.A., Reiskind, J.B., & Bowes, G. 1997. Regulation and localization of key enzymes during the induction of Kranz-less, C4-type in Hydrilla verticillata. Plant Physiol. 115: 1681–1689.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mansfield, T.A., Hetherington, A.M., & Atkinson, C.J. 1990. Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 55–75.

    CAS  Google Scholar 

  • Martin, B., Tauer, C.G., Lin, R.K. 1999. Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci. 39: 1775–1783.

    Google Scholar 

  • Mazen, A.M.A. 1996. Changes in levels of phosphoenolpyruvate carboxylase with induction of Crassulacean acid metabolism (CAM)-like behavior in the C4 plant Portulaca oleracea. Physiol. Plant. 98: 111–116.

    CAS  Google Scholar 

  • McConnaughey, T.A., LaBaugh, J.W., Rosenberry, D.O., Striegl, R.G., Reddy, M.M., & Schuster, P.F. 1994. Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol. Oceanogr. 39: 1319–1332.

    CAS  Google Scholar 

  • Medina, E. 1996. CAM and C4 plants in the humid tropics. In: Tropical forest plant ecophysiology, S.D. Mulkey, R.L. Chazdon, & A.P. Smith (eds.). Chapman & Hall, New York, pp. 56–88.

    Google Scholar 

  • Medina, E. & Klinge, H. 1983. Productivity of tropical woodlands. In: Encyclopedia or plant physiology, Vol. 12D, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 281–303.

    Google Scholar 

  • Meinzer, F., Goldstein, G., & Grantz, D.A. 1990. Carbon isotope discrimination in coffee genotypes grown under limited water supply. Plant Physiol. 92: 130–135.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mommer, L., Pons, T.L., Wolters-Arts, M., Venema, J.H., & Visser, E.J.W. 2005. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol. 139: 497–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monsi, M. & Saeki T. 1953. Ãœber den Lichtfaktor in den Pflanzengesellschaften und sein Bedeutung für die Stoffproduktion. Jap. J. Bot. 14: 22–52.

    Google Scholar 

  • Monsi, M. & Saeki T. 2005. On the factor light in plant communities and its importance for matter production. Ann. Bot. 95: 549–567.

    PubMed  Google Scholar 

  • Mooney, H.A. 1986. Photosynthesis. In: Plant ecology, M.J. Crawley (ed.). Blackwell Scientific Publications, Oxford. pp. 345–373.

    Google Scholar 

  • Morgan, C.L., Turner, S.R., & Rawsthorne, S. 1992. Cell-specific distribution of glycine decarboxylase in leaves of C3, C4 and C3–C4 intermediate species. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 339–343.

    Google Scholar 

  • Morgan, P.B., Ainsworth, E.A., & Long, S.P. 2003. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26: 1317–1328.

    CAS  Google Scholar 

  • Mott, K.A. & Buckley, T.N. 2000. Patchy stomatal conductance: emergent collective behaviour of stomata. Trends Plant Sci. 5: 1380–1385.

    Google Scholar 

  • Murchie, E.H. & Horton, P. 1997. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ. 20: 438–448.

    Google Scholar 

  • Nakano, Y. & Edwards, G.E. 1987. Hill reaction, hydrogen peroxide scavenging, and ascorbate peroxidase activity or mesophyll and bundle sheath chloroplasts or NADP-malic enzyme type C4 species. Plant Physiol. 85: 294–298.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman, J.R. & Raven, J.R. 1993. Carbonic anhydrase in Ranunculus penicillatus spp. pseudofluitans: activity, location and implications for carbon assimilation. Plant Cell Environ. 16: 491–500.

    CAS  Google Scholar 

  • Nielsen, S.L., Gacia, E., & Sand-Jensen, K. 1991. Land plants or amphibious Littorella uniflora (L.) Aschers. maintain utilization of CO2 from sediment. Oecologia 88: 258–262.

    Google Scholar 

  • Niinemets, Ãœ. 2007. Photosynthesis and resource distribution through plant canopies. Plant Cell. Environ. 30: 1052–1071.

    CAS  PubMed  Google Scholar 

  • Nimmo, H.G., Fontaine, V., Hartwell, J., Jenkins, G.I., Nimmo, G.A., & Wilkins, M.B. 2001. PEP carboxylase kinase is a novel protein kinase controlled at the level of expression. New Phytol. 151: 91–97.

    CAS  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S.I., & Murata, N. 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757: 742–749.

    CAS  PubMed  Google Scholar 

  • Nishio, J.N., Sun, J., & Vogelmann, T.C. 1993. Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5: 953–961.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niyogi, K., Grossman, A.R., & Björkman, O. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobel, P.S. & Hartsock, T.L. 1990. Diel patterns of CO2 exchange for epiphytic cacti differing in succulence. Physiol. Plant 78: 628–634.

    Google Scholar 

  • Nobel, P.S., Garcia-Moya, E., & Quero, E. 1992. High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ. 15: 329–335.

    Google Scholar 

  • Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., & Ceulemans, R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 22: 683–714.

    CAS  Google Scholar 

  • Ögren, E. 1993. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101: 1013–1019.

    PubMed Central  PubMed  Google Scholar 

  • Ogren, W.L. 1984. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35: 415–442.

    CAS  Google Scholar 

  • Oguchi, R., Hikosaka, K., & Hirose, T. 2005. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ. 28: 916–927.

    Google Scholar 

  • O’Leary M.H. 1993. Biochemical basis of carbon isotope fractionation. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds.). Academic Press, San Diego, pp. 19–28.

    Google Scholar 

  • Öquist, G., Brunes, L., & Hällgren, J.E. 1982. Photosynthetic efficiency of Betula pendula acclimated to different quantum flux densities. Plant Cell Environ. 5: 9–15.

    Google Scholar 

  • Osmond, C.B. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Photoinhibition of photosynthesis from molecular mechanisms to the field, N.R. Baker & J.R. Bowyer (eds.). Bios Scientific Publishers, Oxford, pp. 1–24.

    Google Scholar 

  • Osmond, C.B. & Holtum, J.A.M. 1981. Crassulacean acid metabolism. In: The biochemistry of plants. A comprehensive treatise, Vol 8, P.K. Stumpf & E.E. Conn (eds.). Academic Press, New York.

    Google Scholar 

  • Osmond, C.B., Björkman, O., & Anderson, D.J. 1980. Physiological processes in plant ecology. Ecological studies, Vol 36. Springer-Verlag, Berlin.

    Google Scholar 

  • Osmond, C.B., Winter, K., & Ziegler, H. 1982. Functional significance of different pathways or CO2 fixation in photosynthesis. In: Encyclopedia or plant physiology, Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 479–548.

    Google Scholar 

  • Pascal, A.A., Liu, Z.F., Broess, K., Van Oort, B., Van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W.R., & Ruban, A. 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–137.

    CAS  PubMed  Google Scholar 

  • Patel, A. & Ting, I.P. 1987. Relationship between respiration and CAM-cycling in Peperomia camptotricha. Plant Physiol. 84: 640–642.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul, M.J. & Foyer, C.H. 2001. Sink regulation of photosynthesis. J. Exp. Bot. 52: 1383–1400.

    CAS  PubMed  Google Scholar 

  • Pearcy, R.W. 1977. Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 59: 795–799.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearcy, R.W. 1988. Photosynthetic utilisation of lightflecks by understorey plants. Aust. J. Plant Physiol. 15: 223–238.

    Google Scholar 

  • Pearcy, R.W. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 421–453.

    CAS  Google Scholar 

  • Pearcy, R.W., Osteryoung, K., & Calkin, H.W. 1985. Photosynthetic responses to dynamic light environments by Hawaiian trees. Time course of CO2 uptake and carbon gain during sunflecks. Plant Physiol. 79: 896–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peisker, M. & Henderson, S.A. 1992. Carbon: terrestrial C4 plants. Plant Cell Environ. 15: 987–1004.

    CAS  Google Scholar 

  • Plaut, Z., Mayoral, M.L., & Reinhold, L. 1987. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves. Plant Physiol. 85: 786–791.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pons, T.L. & Pearcy, R.W. 1992. Photosynthesis in flashing light in soybean leaves grown in different conditions. II. Lightfleck utilization efficiency. Plant Cell Environ. 15: 577–584.

    Google Scholar 

  • Pons, T.L. & Pearcy, R.W. 1994. Nitrogen reallocation and photosynthetic acclimation in response to partial shading in soybean plants. Physiol. Plant. 92: 636–644.

    CAS  Google Scholar 

  • Pons, T.L. & Welschen, R.A.M. 2002. Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ. 25: 1367–1372.

    Google Scholar 

  • Pons, T.L., Schieving, F., Hirose, T., & Werger, M.J.A. 1989. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds.). SPB Academic Publishing, The Hague, pp. 175–186.

    Google Scholar 

  • Pons, T.L., Van der Werf, A., & Lambers, H. 1994. Photosynthetic nitrogen use efficiency of inherently slow and fast-growing species: possible explanations for observed differences. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 61–77.

    Google Scholar 

  • Poot, P., Pilon, J., & Pons, T.L. 1996. Photosynthetic characteristics of leaves of male sterile and hermaphroditic sex types of Plantago lanceolata grown under conditions of contrasting nitrogen and light availabilities. Physiol. Plant. 98: 780–790.

    CAS  Google Scholar 

  • Portis, A. 2003. Rubisco activase – Rubisco’s catalytic chaperone. Photosynth. Res. 75: 11–27.

    CAS  PubMed  Google Scholar 

  • Portis, A.R., Salvucci, M.E., & Ogren, W.L. 1986. Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol. 82: 967–971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potvin, C. 1986. Differences in photosynthetic characteristics among northern and southern C4 plants. Physiol. Plant. 69: 659–664.

    Google Scholar 

  • Prins, H.B.A. & Elzenga, J.T.M. 1989. Bicarbonate utilization: function and mechanism. Aquat. Bot. 34: 59–83.

    CAS  Google Scholar 

  • Pyankov, V.I. & Kondratchuk, A.V. 1995. Specific features of structural organization of photosynthetic apparatus of the East Pamirs plants. Proc. Russ. Acad. Sci. 344: 712–716.

    CAS  Google Scholar 

  • Pyankov, V.I. & Kondratchuk, A.V. 1998. Structure of the photosynthetic apparatus in woody plants from different ecological and altitudinal in Eastern Pamir. Russ. J. Plant Physiol. 45: 567–578.

    Google Scholar 

  • Prins, H.B.A. & de Guia, M.B. 1986. Carbon source of the water soldier, Stratiotes aloides L. Aquat. Bot. 26: 225–234.

    CAS  Google Scholar 

  • Quick, W.P., Chaves, M.M., Wendler, R., David, M., Rodrigues, M.L., Passaharinho, J.A., Pereira, J.S., Adcock, M.D., Leegood, R.C., & Stitt, M. 1992. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ. 15: 25–35.

    CAS  Google Scholar 

  • Rajendrudu, G., Prasad, J.S.R., & Das, V.S.R. 1986. C3 C4-intermediate species in Alternanthera (Amaranthaceae). Leaf anatomy, CO2 compensation point, net CO2 exchange and activities or photosynthetic enzymes. Plant Physiol. 80: 409–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymo, M.E. & Ruddiman, W.F. 1992. Tectonic forcing of late Cenozoic climate. Nature 359: 117–122.

    CAS  Google Scholar 

  • Reich, P.B. & Schoettle, A.W. 1988. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77: 25–33.

    Google Scholar 

  • Reich, P.B., Walters, M.B., & Ellsworth, D.S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94: 13730–13734.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinfelder, J.R., Kraepiel, A.M.L., & Morel, F.M.M. 2000. Unicellular C-4 photosynthesis in a marine diatom. Nature 407: 996–999.

    CAS  PubMed  Google Scholar 

  • Reiskind, J.B., Madsen, T.V., Van Ginkel, L.C., & Bowes, G. 1997. Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ. 20: 211–220.

    CAS  Google Scholar 

  • Rodeghiero, M., Niinemets, Ãœ. & Cescatti, A. 2007. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ. 30: 1006–1022.

    CAS  PubMed  Google Scholar 

  • Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Raines, C.A., & Long, S.P. 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2enrichment. Plant Physiol. 118: 683–689.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland, F., Moore, B., & Sheen, J. 2002. Sugar sensing and signaling in plants. Plant Cell 14: S185–S205.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., & Sheen, J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 57: 675–709.

    CAS  PubMed  Google Scholar 

  • Rühle, W. & Wild, A. 1979. Measurements of cytochrome f and P-700 in intact leaves of Sinapis alba grown under high-light and low-light conditions. Planta 146: 377–385.

    PubMed  Google Scholar 

  • Rundel, P.W. & Sharifi, M.R. 1993. Carbon isotope discrimination and resource availability in the desert shrub Larrea tridentata. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds.). Academic Press, San Diego, pp. 173–185.

    Google Scholar 

  • Sage, R.F. 2002. C-4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends Plant Sci. 7: 283–285.

    CAS  PubMed  Google Scholar 

  • Sage, R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341–370.

    CAS  Google Scholar 

  • Sage, R.F. & Kubien, D. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77: 209–225.

    CAS  PubMed  Google Scholar 

  • Sage, R.F. & Sharkey, T.D. 1987. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol. 84: 658–664.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sage, R.F. & Pearcy, R.W. 1987a. The nitrogen use efficiency or C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84: 954–958.

    CAS  Google Scholar 

  • Sage, R.F. & Pearcy, R.W. 1987b. The nitrogen use efficiency or C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics or Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84: 959–963.

    CAS  Google Scholar 

  • Sage, R.F., Sharkey, T.D., & Seemann J.R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvucci, M.E. 1989. Regulation of Rubisco activity in vivo. Physiol. Plant. 77: 164–171.

    CAS  Google Scholar 

  • Salvucci, M.E. & Crafts-Brandner, S.J. 2004a. Mechanism for deactivation of Rubisco under moderate heat stress. Physiol. Plant. 122: 513–519.

    CAS  Google Scholar 

  • Salvucci, M.E. & Crafts-Brandner, S.J. 2004b. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134: 1460–1470.

    CAS  Google Scholar 

  • Sassenrath-Cole, G.F., Pearcy, R.W., & Steinmaus, S. 1994. The role of enzyme activation state in limiting carbon assimilation under variable light conditions. Photosynth. Res. 41: 295–302.

    CAS  PubMed  Google Scholar 

  • Schreiber, U, Bilger, W., & Neubauer, C. 1995. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds.). Springer-Verlag, Berlin, pp. 49–70.

    Google Scholar 

  • Schulze, E.-D., Kelliher, F.M., Körner, C., Lloyd, J., & Leuning, R. 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25: 629–660.

    Google Scholar 

  • Seemann, J.R. 1989. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants. Plant Physiol. 91: 379–386.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seemann, J.R., Badger, M.R., & Berry, J.A. 1984. Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol. 74: 791–794.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharkey, T.D. 2005. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 28: 269–277.

    CAS  Google Scholar 

  • Sharkey, T.D., Seemann, J.R., & Pearcy, R.W. 1986a. Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol. 82: 1063–1068.

    CAS  Google Scholar 

  • Sharkey, T.D., Stitt, M., Heineke, D., Gerhardt, R., Raschke, K., & Heldt, H.W. 1986b. Limitation of photosynthesis by carbon metabolism. II. CO2-insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol. 81: 1123–1129.

    CAS  Google Scholar 

  • Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., & Singsaas, E.L. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30: 1035–1040.

    CAS  PubMed  Google Scholar 

  • Sims, D.A. & Pearcy, R.W. 1989. Photosynthetic characteristics of a tropical forest understorey herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta, grown in contrasting light environments. Oecologia 79: 53–59.

    Google Scholar 

  • Smedley, M.P., Dawson, T.E., Comstock, J.P., Donovan, L.A., Sherrill, D.E., Cook, C.S., & Ehleringer, J.R. 1991. Seasonal carbon isotope discrimination in a grassland community. Oecologia 85: 314–320.

    Google Scholar 

  • Smeekens, S. 2000. Sugar induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81.

    CAS  PubMed  Google Scholar 

  • Smeekens, S. & Rook, F. 1998. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol. 115: 7–13.

    Google Scholar 

  • Smith, H., Samson, G., & Fork, D.C. 1993. Photosynthetic acclimation to shade: Probing the role of phytochromes using photomorphogenetic mutants of tomato. Plant Cell Environ. 16: 929–937.

    CAS  Google Scholar 

  • Staiger, C.J., Gibbon, B.C., Kovar, D.R., & Zonia, L.E. 1997. Profilin and actin-depolymerizing facor: Modulators of actin organization in plants. Trends Plant Sci. 2: 275–281.

    Google Scholar 

  • Sternberg, L.O., DeNiro, M.J., & Johnson, H.B. 1984. Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 74: 557–561.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stitt, M. & Hurry, V. 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5: 199–206.

    CAS  PubMed  Google Scholar 

  • Surridge, C. 2002. Agricultural biotech: the rice squad. Nature 416: 576–578.

    CAS  PubMed  Google Scholar 

  • Tans, P. 2007. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends).

  • Terashima, I. & Hikosaka, K. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18: 1111–1128.

    Google Scholar 

  • Terashima, I., Wong, S.C., Osmond, C.B., & Farquhar, G.D. 1988. Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol. 29: 385–394.

    CAS  Google Scholar 

  • Terashima, I., Miyazawa, S.-I., & Hanba, Y.T. 2001. Why are sun leaves thicker than shade leaves? – Consideration based on analyses of CO2 diffusion in the leaf. J. Plant Res. 114: 93–105.

    CAS  Google Scholar 

  • Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P., & Yano, S. 2006. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57: 343–354.

    CAS  PubMed  Google Scholar 

  • Ueno, O. 2001. Environmental regulation of C3and C4differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol. 127: 1524–1532.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno, O., Samejima, M., Muto, S., Miyachi, S. 1988. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: expression of C4and C3 modes in contrasting environments. Proc. Natl. Acad. Sci. USA 85: 6733–6737.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Oosten, J.-J. & Besford, R.T. 1995. Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant Cell Environ. 18: 1253–1266.

    Google Scholar 

  • Van Oosten, J.J., Wilkins, D., & Besford, R.T. 1995. Acclimation of tomato to different carbon dioxide concentrations. Relationships between biochemistry and gas exchange during leaf development. New Phytol. 130: 357–367.

    Google Scholar 

  • Vernon, D.M., Ostrem, J.A., Schmitt, J.M., & Bohnert, H. 1988. PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol. 86: 1002–1004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel, J.C., Fuls, A., & Ellis, R.P. 1978. The geographical distribution of Kranz grasses in South Africa. S. Afr. J. Sci. 74: 209–215.

    Google Scholar 

  • Vogelmann, T.C. 1993. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 231–251.

    Google Scholar 

  • Vogelmann, T.C. & Evans, J.R. 2002. Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ. 25: 1313–1323.

    Google Scholar 

  • Vogelmann, T.C., Nishio, J.N., & Smith, W.K. 1996. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1: 65–70.

    Google Scholar 

  • Von Caemmerer, S. 1989. A model of photosynthetic CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates. Planta 178: 463–474.

    Google Scholar 

  • Von Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Von Caemmerer, S. & Farquhar, G.D. 1981. Some relationships between biochemistry of photosynthesis and gas exchange of leaves. Planta 153: 376–387.

    Google Scholar 

  • Von Caemmerer, S. & Farquhar, G.D. 1984. Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p(CO2) on photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160: 320–329.

    Google Scholar 

  • Von Caemmerer, S., Evans, J.R., Hudson, G.S., & Andrews, T.J. 1994. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97.

    Google Scholar 

  • Wakabayashi, K. & Böger, P. 2002. Target sites for herbicides: entering the 21st century. Pest Manage. Sci. 58: 1149–1154.

    CAS  Google Scholar 

  • Walters, R.G. 2005. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56: 435–447.

    CAS  PubMed  Google Scholar 

  • Walters, R.G., Rogers, J.J.M., Shephard, F., & Horton, P. 1999. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209: 517–527.

    CAS  PubMed  Google Scholar 

  • Wand, S.J.E., Midgley, G.F., Jones, M.H., & Curtis, P.S. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol. 5: 723–741.

    Google Scholar 

  • Warren, C.R. 2007. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J. Exp. Bot. in press.

    Google Scholar 

  • Warren, C.R. & Adams, M.A. 2006. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 29: 192–201.

    CAS  PubMed  Google Scholar 

  • Warren, C.R., Low, M., Matysek, R., & Tausz, M. 2007. Internal conductance to CO2transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ. Exp. Bot. 59: 130–138.

    CAS  Google Scholar 

  • Weger, H.G., Silim, S.N., & Guy, R.D. 1993. Photosynthetic acclimation to low temperature by western red cedar seedlings. Plant Cell Environ. 16: 711–717.

    CAS  Google Scholar 

  • Weston, D.J., Bauerle, W.L., Swire-Clark, G.A., Moore, Bd., & Baird, W.V. 2007. Characterization of Rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae). Am. J. Bot. 94: 926–934.

    PubMed  Google Scholar 

  • Willeford, K.O. & Wedding, R.T. 1987. pH effects on the activity and regulation of the NAD malic enzyme. Plant Physiol. 84: 1080–1083.

    Google Scholar 

  • Winter, K. & Smith, J.A.C. 1996. An introduction to crassulaceaen acid metabolism. Biochemical principles and ecological diversity. In: Crassulacean acid metabolism, biochemistry, ecophysiology and evolution. Ecological studies 114, K. Winter & J.A.C. Smith (eds.). Springer-Verlag, Berlin, pp. 1–13.

    Google Scholar 

  • Winter, K., Zotz, G., Baur, B., & Dietz, K.-J. 1992. Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91: 47–51.

    Google Scholar 

  • Wright, G.C., Hubick,.K.T., & Farquhar, G.D. 1988. Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field-grown peanut cultivars. Aust. J. Plant Physiol. 15: 815–825.

    Google Scholar 

  • Wright, I.J., Reich, P.B., & Westoby, M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15: 423–434.

    Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ãœ., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.

    CAS  PubMed  Google Scholar 

  • Wu, M.-.X & Wedding, R.T. 1987. Temperature effects on phosphoenolpyruvate carboxylase from a CAM and a C4plant: a comparative study. Plant Physiol. 85: 497–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wullschleger, S.D. Tschaplinski, T.J., & Norby, R.J. 2002. Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ. 25: 319–331.

    PubMed  Google Scholar 

  • Yamori, W., Noguchi, K., & Terashima, I. 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ. 28: 536–547.

    CAS  Google Scholar 

  • Yamori, W., Noguchi, K., Hanba, Y.T., & Terashima, I. 2006a. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Physiol. 47: 1069–1080.

    CAS  Google Scholar 

  • Yamori, W., Suzuki, K., Noguchi, K., Nakai, M., & Terashima, I. 2006b. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ. 29: 1659–1670.

    CAS  Google Scholar 

  • Yano, S. & Terashima, I. 2001. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation on Chenopodium album. Plant Cell Physiol. 41: 1303–1310.

    Google Scholar 

  • Yeoh, H.-H., Badger, M.R., & Watson, L. 1981. Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylase among plants. Plant Physiol. 67: 1151–1155.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Photosynthesis. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_2

Download citation

Publish with us

Policies and ethics