Ishikawa H. Insect in symbiosis: An introduction. In: Bourtzis K, Miller TA, eds. Insect Symbiosis Boca Raton: Crc Press Llc, 2003:33487.
Google Scholar
Dillon RJ, Dillon VM. The gut bacteria of insects: Nonpathogenic interactions. Annu Rev Entomol 2004; 49:71–92.
PubMed
CrossRef
CAS
Google Scholar
Gil R, Latorre A, Moya A. Bacterial endosymbionts of insects: Insights from comparative genomics. Environ Microbiol 2004; 6:1109–22.
PubMed
CrossRef
CAS
Google Scholar
Hoffmeister M, Martin W. Interspecific evolution: Microbial symbiosis, endosymbiosis and gene transfer. Environ Microbiol 2003; 5:641–49.
PubMed
CrossRef
CAS
Google Scholar
Riehle MA, Jacobs-Lorena M. Using bacteria to express and display anti-parasite molecules in mosquitoes: Current and future strategies. Insect Biochem Mol Biol 2005; 35:699–707.
PubMed
CrossRef
CAS
Google Scholar
Zientz E, Silva FJ, Gross R. Genome interdependence in insect-bacterium symbioses. Genome Biol 2001; 2:1032. 1–32.6.
CrossRef
Google Scholar
Douglas AE. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 1998; 43:17–37.
PubMed
CrossRef
CAS
Google Scholar
Sinkins SP. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 2004; 34:723–29.
PubMed
CrossRef
CAS
Google Scholar
Gotoh T, Noda H, Ito S. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 2007; 98:13–20.
PubMed
CrossRef
CAS
Google Scholar
Marzorati M, Alma A, Sacchi L et al. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence doree in Vitis vinifera. Appl Environ Microbiol 2006; 72:1467–75.
PubMed
CrossRef
CAS
Google Scholar
Aksoy S. Control of tsetse flies and trypanosomes using molecular genetics. Vet Parasitol 2003; 115:125–45.
PubMed
CrossRef
CAS
Google Scholar
Durvasula RV, Sundaram RK, Cordon-Rosales C et al. Rhodnius prolixus and its symbiont, Rhodococcus rhodnii: A model for paratrangenic control of disease transmission. In: Bourtzis K, Miller TA, eds. Insect Symbiosis. Boca Raton: Crc Press Llc, 2003:33487.
Google Scholar
Chang TL, Chang CH, Simpson DA et al. Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci USA 2003; 100:11672–77.
PubMed
CrossRef
CAS
Google Scholar
Bextine B, Lauzon C, Potter S et al. Delivery of a genetically marked Alcaligenes sp. to the glassy-winged sharpshooter for use in a paratransgenic control strategy. Curr Microbiol 2004; 48:327–31.
PubMed
CrossRef
CAS
Google Scholar
Zabalou M, Riegler M, Theodorakopoulou M et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 2004; 101:15042–45.
PubMed
CrossRef
CAS
Google Scholar
Schnepf E, Crickmore N, Van Rie J et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:775–806.
PubMed
CAS
Google Scholar
Zchori-Fein E, Gottlieb Y, Kelly SE et al. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 2001; 98:12555–60.
PubMed
CrossRef
CAS
Google Scholar
Beard CB, Dotson EM, Pennington PM et al. Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 2001; 31:621–27.
PubMed
CrossRef
CAS
Google Scholar
Baldridge GD, Burkhardt NY, Simser JA et al. Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl Environ Microbiol 2004; 70:6628–36.
PubMed
CrossRef
CAS
Google Scholar
World Health Organization. World malaria report 2005. Geneva, Switzerland: World Health Organization, Online http://www.rbm.who.int/wmr2005.
Google Scholar
Atkinson PW, Michel K. What’s buzzing? Mosquito genomics and transgenic mosquitoes. Genesis 2002; 32:42–48.
PubMed
CrossRef
Google Scholar
Grossman GL, Rafferty CS, Clayton JR et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 2001; 10:597–604.
PubMed
CrossRef
CAS
Google Scholar
Catteruccia F, Nolan T, Loukeris TG et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 2000; 405:959–62.
PubMed
CrossRef
CAS
Google Scholar
Ito J, Ghosh A, Moreira AL et al. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 2002; 417:452–55.
PubMed
CrossRef
CAS
Google Scholar
Catteruccia F, Godfray HC, Crisanti A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 2003; 299:1225–27.
PubMed
CrossRef
CAS
Google Scholar
Marrelli MT, Li C, Rasgon JL et al. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood. Proc Natl Acad Sci USA 2007; 104:5580–83.
PubMed
CrossRef
CAS
Google Scholar
Riehle MA, Moreira CK, Lampe D et al. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 2007; 37:595–603.
PubMed
CrossRef
CAS
Google Scholar
Khampang P, Chungjatupornchai W, Luxananil P et al. Efficient expression of mosquito-larvicidal proteins in a gram-negative bacterium capable of recolonization in the guts of Anopheles dirus larva. Appl Microbiol Biotechnol 1999; 51:79–84.
PubMed
CrossRef
CAS
Google Scholar
Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 2005; 71:7217–23.
PubMed
CrossRef
CAS
Google Scholar
Hoy MA. Transgenic insects for pest management programs: Status and prospects. Environ Biosafety Res 2003; 2:61–64.
PubMed
Google Scholar
Favia G, Ricci I, Damiani C et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 2007; 104:9047–51.
PubMed
CrossRef
CAS
Google Scholar
Yamada Y, Katsura K, Kawasaki H et al. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2000; 50:823–29.
PubMed
CAS
Google Scholar
Katsura K, Kawasaki H, Potacharoen W et al. Asaia siamensis sp. nov., an acetic acid bacterium in the alpha-proteobacteria. Int J Syst Evol Microbiol 2001; 51:559–63.
PubMed
CAS
Google Scholar
Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 2006; 4:e229.
PubMed
CrossRef
CAS
Google Scholar
Cheng Q, Aksoy S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 1999; 8:125–32.
PubMed
CrossRef
CAS
Google Scholar
Tamas I, Andersson SGE. Comparative genomics in insect endosymbionts. In: Bourtzis K, Miller TA, eds. Insect Symbiosis. Boca Raton: Crc Press Llc, 2003:33487.
Google Scholar
Ochman H, Moran NA. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 2001; 292:1096–99.
PubMed
CrossRef
CAS
Google Scholar
Mostafa HE, Heller KJ, Geis A. Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Acetobacter liquefaciens. Appl Environ Microbiol 2002; 68:2619–23.
PubMed
CrossRef
CAS
Google Scholar
Moran NA, Dunbar HE. Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci USA 2006; 103:12803–06.
PubMed
CrossRef
CAS
Google Scholar
Nalepa CA, Bignell DE, Bandi C. Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Socieaux 2001; 48:194–201.
CrossRef
Google Scholar
Ricci I, Cancrini G, Gabrielli S et al. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain reaction survey and new identifications. J Med Entomol 2002; 39:562–67.
PubMed
CrossRef
Google Scholar
Yoshida S, Ioka D, Matsuoka H et al. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 2001; 113:89–96.
PubMed
CrossRef
CAS
Google Scholar
Ghosh AK, Ribolla PE, Jacobs-Lorena M. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 2001; 98:13278–81.
PubMed
CrossRef
CAS
Google Scholar
Zieler H, Keister DB, Dvorak JA et al. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J Exp Biol 2001; 204:4157–67.
PubMed
CAS
Google Scholar