Skip to main content

Advanced Bonding/Joining Techniques

  • Chapter
Materials for Advanced Packaging

Abstract

In this chapter, three advanced bonding/joining techniques, adhesive bonding, direct bonding, and lead-free soldering, are presented. For each technique, we first review the bonding principles and applications in electronic industries, followed by novel bonding materials and processes.

For adhesive bonding, four popular adhesives, epoxy resins, silicon resins, polymides, and acrylics, are reviewed. Two new adhesives, liquid crystal polymer (LCP) and SU8, are covered too. LCP has the properties of both polymers and liquid crystals. It, thus, can be bonded to silicon, metal, and glass, and used as flexible circuit board. SU 8, an epoxy-based negative type photoresist, has been applied to zero-level-packaging technology for low-cost wafer-level MEMS packaging.

For direct bonding, three popular methods, anodic bonding, diffusion bonding, and surface-activated bonding, are discussed. Anodic bonding process has extensive applications in silicon-glass bonding and glass-glass bonding. Diffusion bonding process forms chemical bonds by inter-diffusion of two different atoms over the bond line. Surface-activated bonding is valuable in bonding objects with large difference in coefficients of thermal expansion because of low process temperature, usually room temperature. A novel Ag-to-Cu direct bonding technique at bonding temperature of 250°C is reported.

In lead-free soldering, fundamental soldering principle is presented. To eliminate the use of fluxes, oxidation-free fluxless soldering technology has been developed. It has been applied to developing numerous soldering processes based on systems such as Sn-Au, Sn-Cu, Sn-Ag, In-Au, In-Cu, and In-Ag. Two fluxless processes are reported. One is bonding between Si/Cr/Au/Sn/Ag and Si/Cr/Au. The other is between Si/Cr/Au/Ag and Cu/Ag/In/Ag. In either process, high bonding quality is achieved without using any flux. Fluxless process has also been demonstrated in flip-chip configuration using Sn-rich solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo S, Wong C (2001) Fundamental study on moisture absorption in epoxy for electronic application. Int Symp Adv Packag Mater, pp 293–298

    Google Scholar 

  2. Teh P, Mariatti M, Beh K et al (2007) The properties of epoxy resin coated silica fillers composites. Mater Lett 61:2156–2158

    Article  CAS  Google Scholar 

  3. Chiu C, Lin J, Hsu K et al (2003) Thermally cleavable epoxy resins for electronic and optoelectronic applications. IEEE Electron Packag Technol Conf, pp 425–428

    Google Scholar 

  4. Cognard P, editor (2005) Adhesives and Sealants: Basic concepts and high tech bonding. Elsevier Ltd, Oxford

    Google Scholar 

  5. Watanabe T, Ooba N, Imamura S et al (1998) Polymeric optical waveguide circuits formed using silicone resin. J Lightwave Technol 16:1049–1055

    Article  CAS  Google Scholar 

  6. Chida K, Sakaguchi S, Kimura T et al (1982) High speed coating of optical fibres with thermally curable silicone resin using a pressurized die. Electro Lett 18:713–715

    Article  CAS  Google Scholar 

  7. Petrie E (2000) Handbook of Adhesives and Sealants. McGraw Hill, New York

    Google Scholar 

  8. Hoontrakul P, Sperling L, Pearson R (2003) Understanding the strength of epoxy-polyimide interfaces for flip-chip packages. IEEE Trans Devices and Mater Reliab 3:159–166

    Article  CAS  Google Scholar 

  9. Kinloch A (1986) Structural Adhesives. Elsevier, London

    Google Scholar 

  10. Pizzi A, Mittal K (ed) (2003) Handbook of Adhesive technology. Marcel Dekker, New York

    Google Scholar 

  11. Sashida N, Hirano T, Tokoh A (1989) Photosensitive polyimides with excellent adhesive property for integrated circuit devices. IEEE Electron Compon Conf, pp 167–170

    Google Scholar 

  12. Itatani T, Gorwadkar S, Matsumoto S et al (2000) Positive photosensitive polyimide systhtesized by block-copolymerization for KrF lithography. Proc SPIE, pp 552–558

    Google Scholar 

  13. Kikuchi K, Goto M, Aoyagi M et al (2005) Efficient fabrication process for superconducting integrated circuits using photosensitive polyimide insulation layers. IEEE Trans Appl Supercond 15:94–97

    Article  CAS  Google Scholar 

  14. Jain J, Samant S (2005) Novel multilayering technique using folded flexible circuits. IEEE Trans Electron Packag Manuf 28:259–264

    Article  Google Scholar 

  15. Kristiansen H, Liu J (1998) Overview of conductive adhesive interconnection technologies for LCD’s. IEEE Int Symp on Polym Electron Packag, pp 223–232

    Google Scholar 

  16. Kristiansen H, Liu J (1998) Overview of conductive adhesive interconnection technologies for LCDs. IEEE Trans Compon Packag Manuf Technol 21:208–214

    Article  Google Scholar 

  17. Lau J (1995) Flip chip technologies. McGraw-Hill, New York

    Google Scholar 

  18. Kubo K, Touma S, Ross D (1986) Chip-on-glass LCD for automotive application. SAE Spec Publ, pp 115–119

    Google Scholar 

  19. Lawrence L (ed) (1985) Recent advances in liquid crystalline polymers. Elservier Applied Science Publishers, London and Newyork

    Google Scholar 

  20. Thompson D, Tantot O, Papapolymerou J et al (2004) Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30–110 GHz. IEEE Trans Microw Theory Technol 52:1343–1352

    Article  CAS  Google Scholar 

  21. Tentzeris M, Laskar J, Lee J-H (2004) 3D Integrated RF and millimeter-wave functions and modules using liquid crstal polymer (LCP) system-on-package technology. IEEE. Trans Adv Packag 27:332–340

    Article  CAS  Google Scholar 

  22. Wang G, Thompson D, Papapolymerou J (2004) Low cost RF MEMS switches using LCP substrate. IEEE Trans Adv Packag 3:1441–1444

    Google Scholar 

  23. DeJean G, Bairavasubramanian R, Papapolymerou J et al (2005) Liquid Crystal Polymer (LCP): A new organic material for the development of multilayer dual-frequency/dual polarization flexible antenna arrays. IEEE Antennas and Wireless Propag Lett 4:22–26

    Article  Google Scholar 

  24. Yu L, Tay F, Iliescu C et al (2006) Adhesive bonding with SU8 at wafer level for microfluidic devices. J Phys 114:189–192

    Google Scholar 

  25. Yu L, Iliescu C, Chen B et al (2006) SU8 adhesive bonding using contact imprinting. Int Semicond Conf, pp 189–192

    Google Scholar 

  26. Reuter D, Bertz A, Gessner T (2005) Selective adhesive bonding with SU-8 for zero-level-packaging. Micro- and Nanotechnology: Mater Processes, Packag, and Syst II, pp 163–171

    Google Scholar 

  27. Wallis G and Pomerants D (1969) Field Assisted Glass-Metal Sealing. J Appl Phys 40:3946–3949

    Article  CAS  Google Scholar 

  28. Schmidt M (1998) Wafer-to-Wafer Bonding for Microstructure Formation. Proc of the IEEE 86:1575–1585

    Google Scholar 

  29. Wei J, Nai S, Wong C et al (2004) Glass-to-glass anodic bonding process and electrostatic force. Thin Solid Films 462–463:487–491

    Article  CAS  Google Scholar 

  30. Lin C, Yang H, Wang W et al (2007) Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections. J Micromech Microeng 17:1200–1205

    Article  CAS  Google Scholar 

  31. Guan1 R, Gan Z, Fulong Z et al (2006) Anodic Bonding Study on Vacuum Micro Sealing Cavity. IEEE Elcetro Packag Technol Conf, pp 1–4

    Google Scholar 

  32. Jin Y, Wang Z, Lim P et al (2003) MEMS vacuum packaging technology and applications. IEEE Electron Packag Technol Conf, pp 301–306

    Google Scholar 

  33. Stefano L, Malecki K, Rossi A et al (2006) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens and Actuators B 114: 625–630

    Article  CAS  Google Scholar 

  34. Briand D, Weber P, Rooij N (2004) Silicon liquid flow sensor encapsulation using metal to glass anodic bonding. IEEE Int Micro Electro Mech Syst Conf, pp 649–652

    Google Scholar 

  35. Akselsen O (1992) Review Diffusion Bonding of Ceramics. J Mater Sci 27: 569–579

    Article  CAS  Google Scholar 

  36. Qin C-D and Derby B (1992) Diffusion bonding of nickel and zirconia: Mechanical properties and interfacial microstructures. J Mater Res 7: 1480–1488

    Article  CAS  Google Scholar 

  37. Chen S, Ke F, Zhou M, and Bai Y (2007) Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al. Acta Mater 55:3169–3175

    Article  CAS  Google Scholar 

  38. Li H, Zheng Y, Akin D et al (2005) Characterization and modeling of microfluidic dielectrophoresis filter for biological species. J Microlelectromech Syst 14:103–112

    Article  Google Scholar 

  39. Bartle P, Houldcroft P, Needham J et al (1979) Diffusion bonding as a production process. The Welding Institute, UK

    Google Scholar 

  40. Tummala R, Rymaszewski E, Klopfenstein A (1997) Microelectronics packaging handbook. Chapman & Hall, USA

    Google Scholar 

  41. Bolcar V (1968) Thermocompression bonding of external package leads on integrated circuit substrates. IEEE Trans Electron Devices 15:651–655

    Article  Google Scholar 

  42. Wang Z, Tan Y, Schreiber C (2000) Development of chip-on-dot flip chip technique utilizing gold dot™ flexible circuitry. IEEE Electro Compon Technol Conf, pp 1470–1474

    Google Scholar 

  43. Takagi H, Kikuchi K, Maeda R et al (1996) Surface activated bonding of silicon wafers at room temperature. Appl Phys Lett 68:2222–2224

    Article  CAS  Google Scholar 

  44. Suga T, Takahashi Y, Takagi H et al (1992) Structure of Al-Al and Al-Si3Ni4 interfaces bonded at room temperature by means of the surface activation method. Acta Metall Mater 40:S133–S137

    Article  CAS  Google Scholar 

  45. Takagi H, Maeda R (2006) Direct bonding of two crystal substrates at room temperature by Ar-beam surface activation. J Cryst Growth 292:429–432

    Article  CAS  Google Scholar 

  46. Takagi H, Maeda R, Hosoda N (1999) Room-twmperature bonding of lithium niobate and silicon wafers by argon-beam surface activation. Appl Phys Lett 74:2387–2389

    Article  CAS  Google Scholar 

  47. Davoine C, Fendler M, Louis C et al (2006) Impact of pitch reduction over residual strain of flip chip solder bump after refow. IEEE Int. Conf. on Therm Mech and Multiphysics Simul and Exp in Micro-Electron and Micro-Syst, pp 1–5

    Google Scholar 

  48. Peng C-T, Liu C-M, Lin J-C et al (2004) Reliability analysis an ddesign for the fine-pitch flip chip BGA packgeing. IEEE Trans. Compon Packag Technol 24:684–693

    Article  Google Scholar 

  49. Xiao G, Chan P, Teng A et al (2001) Reliability study and failure analysis of fine pitch solder bumped flip chip on low-cost printed circuit board substrate. IEEE Electon Compon Technol Conf, pp 598–605

    Google Scholar 

  50. Xu Z, Suga T. (2005) Surface activated bonding –high density packaging solution for advanced microelectronic system. IEEE Int Electron Packag Technol Conf, pp 398–403

    Google Scholar 

  51. Shigetou A, Itoh T, Matsuo M et al (2006) Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method. IEEE Trans Adv Packag 29:218–226

    Article  CAS  Google Scholar 

  52. Wang Q, Hosoda N, Itoh T et al (2003) Reliability of Au bump-Cu direct interconnections fabricated by means of surface activated bonding method. Microelectron Reliab 43:751–756

    Article  CAS  Google Scholar 

  53. Wang P, Kim J, Lee C (2007) A Novel Ag-Cu Lamination Process. IEEE Adv Packag Mater Symp, pp 200–202

    Google Scholar 

  54. Yamada Y, Takaku Y, Yagi Y et al (2006) Pb-free high temperature solders for power device packaging. Microelectron and Reliab 46:1932–1937

    Article  CAS  Google Scholar 

  55. Lee C, Wang C, Matijasevic G (1991) A new bonding technology using gold and tin multilayer composite structures. IEEE Trans Compon Hybrids and Manuf Tech 14:407–412

    Article  CAS  Google Scholar 

  56. Bernier (1998) The nature of white residue on printed circuit assemblies. Kester Solder, Des Plaines, IL

    Google Scholar 

  57. Koopman N, Bobbio S, Nangalia S et al (1993) Fluxless soldering in air and nitrogen. Proc IEEE Electron Compon and Technol Conf, pp 595–605

    Google Scholar 

  58. Beranek et al (1997) Fluxless, no clean assembly of optoelectronic devices with PADS. Proc IEEE Electron Compon and Technol Conf, pp 755–762

    Google Scholar 

  59. Hong S, Kang C, Jung J (2004) Plama reflow bumping of Sn3.5%Ag solder for flux-free flip chip package application. IEEE Trans Adv Packag 27:90–96

    Article  CAS  Google Scholar 

  60. Park C, Hong S, Jung J et al (2001) A study on the fluxless soldering of Si wafer/glass substrate using Sn3.5Ag and Sn37 Pb solder. Mater Trans 42:820–824

    Article  CAS  Google Scholar 

  61. Lin W, Lee Y (1999) Study of fluxless soldering using formic acid vapor. IEEE Trans Adv Packag 22:592–601

    Article  CAS  Google Scholar 

  62. Matsuki H, Matsui H, Watanabe E (2001) Fluxless bump reflow using carboxylic acid. Int Symp on Adv Packag Mater, pp 135–139

    Google Scholar 

  63. Dong C, Patrick R, Karwacki E (2007) Electron attachment: a new approach to H2 fluxless solder reflow for wafer bumping. IEEE Trans Adv Packag 30:485–490

    Article  CAS  Google Scholar 

  64. Matijavesic G, Lee C (1989) Void-free Au-Sn eutectic bonding of GaAs dice and its characterization using scanning acoustic microscopy. J Electron Mater 18:327–337

    Article  Google Scholar 

  65. Zakel E, Gwiasda J, Kloesser J et al (1994) Fluxless flip chip assembly on rigid and flexible polymer substrates using the Au-Sn metallurgy. Proc. IEEE/CMPT Electron Manuf Tech Symp, pp 177–184

    Google Scholar 

  66. Kallmayer C, Opperman H, Engelmann G et al (1996) Self-aligning flip-chip assembly using eutectic gold/tin solder in different atmospheres. Proc. IEEE/CMPT Electron Manuf Tech Symp, pp 18–25

    Google Scholar 

  67. Okamoto H, Massalski T (eds) (1987) Phase Diagram of Binary Gold Alloys, ASM International, Metals Park, OH

    Google Scholar 

  68. Ishikawa M, Sasaki H, Ogawa S et al (2005) Application of gold-tin solder paste for fine parts and devices. Proc IEEE Electron Compon Technol Conf, pp 701–709

    Google Scholar 

  69. Matijasevic G, Lee C, Wang C (1993) Gold-tin alloy phase diagram and properties related to its use as a bond medium. Thin Solid Films 223:276–287

    Article  CAS  Google Scholar 

  70. Lee C, Wang C, Matijasevic G (1993) Gold-indium alloy bonding below the eutectic temperature. IEEE Trans Compon Hybrids and Manuf Tech 16:311–316

    Article  CAS  Google Scholar 

  71. Matijasevic G, Chen Y, Lee C (1994) Copper-tin multilayer composite solder for fluxless processing. Int J Microcircuits and Electron Packag 17:108–117

    CAS  Google Scholar 

  72. Lee C, Chen Y (1995) Indium-copper multilayer composite solder for fluxless Bonding. Mater Res Soc Spring Meet, MRS Symp Proc Electron Packag Mater Sci VIII 390:225–230

    Google Scholar 

  73. Chen Y, So W, Lee C (1997) A fluxless bonding technology using indium-silver multilayer composites. IEEE Trans Compon Packag and Manuf Technol 20:46–51

    Article  Google Scholar 

  74. So W, Lee C (2000) A fluxless process of fabricating In-Au joints on copper substrates. IEEE Trans Compon and Packag Technol 23:377–382

    Article  CAS  Google Scholar 

  75. Lee C, Chuang R (2003) Fluxless non-eutectic joints fabricated using gold-tin multilayer composite. IEEE Trans Compon and Packag Technol 26:416–422

    Article  CAS  Google Scholar 

  76. Chuang R, Kim D, Park J et al (2004) A fluxless process of producing tin-rich gold-tin joints in air. IEEE Trans Compon and Packag Technol 27:177–181

    Article  CAS  Google Scholar 

  77. Kim J, Lee C (2007) Fluxless Sn-Ag bonding in vacuum using electroplated layers. Mater Sci and Eng A 448:345–350

    Article  CAS  Google Scholar 

  78. Kim J, Wang P, Lee C (2007) Fluxless bonding of Si Chips to Ag-copper using Electroplated Indium and Silver Structures. Proc IEEE Adv Packag Mater Symp, pp 194–199

    Google Scholar 

  79. Kim J, Kim D, Lee C (2006) Fluxless flip-chip solder joint fabrication using electroplated Sn-Rich Sn-Au structures. IEEE Trans Adv Packag 29:473–482

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, C.C., Wang, P.J., Kim, J.S. (2009). Advanced Bonding/Joining Techniques. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78219-5_2

Download citation

Publish with us

Policies and ethics