Skip to main content

Digital Health and Bio-Medical Packaging

  • Chapter

Abstract

This chapter reviews the healthcare trends and implications, as well as electronic packaging applications in implantable devices, pacing leads, bio-medical sensors, and point-of-care sensors. Each presents unique opportunities and challenges for electronic packaging and materials.

Keywords

  • Implantable devices
  • bio-medical sensors
  • leads
  • point of care
  • packaging

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-78219-5_19
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-78219-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 19.1
Fig. 19.2
Fig. 19.3
Fig. 19.4
Fig. 19.5
Fig. 19.6
Fig. 19.7
Fig. 19.8
Fig. 19.9
Fig. 19.10
Fig. 19.11
Fig. 19.12
Fig. 19.13
Fig. 19.14
Fig. 19.15
Fig. 19.16
Fig. 19.17
Fig. 19.18
Fig. 19.19
Fig. 19.20

References

  1. Williams DF, The Williams Dictionary of Biomaterials (Liverpool, UK: Liverpool University Press, 1999), 40

    Google Scholar 

  2. Bisping HJ and Rupp H. A new permanent transvenous electrode for fixation in the atrium. In Watanabe Y (ed), Proceedings of the Vth International Symposium on Cardiac Pacing. Amsterdam, Exerpta Medica, pp. 543–547, 1977

    Google Scholar 

  3. Citron P and Dickhudt E. US Patent No. 3959502, Endocardial electrode. 1976

    Google Scholar 

  4. Anderson JA. Inflammatory response to implants. ASAIO II(2):101–107, 1988

    CrossRef  Google Scholar 

  5. Chardack W, Gage A and Greatbatch W. Correction of complete heart block by a self contained and subcutaneously implanted pacemaker. J Thorac Cardiovasc Surg 42:814, 1961

    CAS  Google Scholar 

  6. Dolezel B, Adamirova L, Naprstek A and Vondracek P. In vivo degradation of polymers. I. Change of mechanical properties in polyethylene pacemaker lead insulations during long-term implantation in the human body. Biomaterials, 10(2):96–100, 1989

    CAS  CrossRef  Google Scholar 

  7. Wasserbauer R, Beranova M, Vancurova D and Dolezel B. Biodegradation of polyethylene foils by bacterial and liver homogenates. Biomaterials, 11(l):36–40, 1990

    CAS  CrossRef  Google Scholar 

  8. Byrd CL, McArthur W, Stokes K, Sivina M, Yahr WZ and Greenberg J. Implant experience with unipolar polyurethane pacing leads. PACE, 6(5):868–882, 1983

    Google Scholar 

  9. Zhao Q, Topham N, Anderson JM, Hiltner A, Loden G and Payet CR. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25:177–183, 1991

    CAS  CrossRef  Google Scholar 

  10. Zhao Q, McNally AK, Rubin KR, Reiner M, Wu Y, Rose-Caprara V, Anderson JM, Hiltner A, Urbanski P and Stokes K. Human plasma α2-macroglobulin promotes in vitro stress cracking of Pellethane 2363-80A: In vivo and in vitro correlations. J Biomed Mater Res In Press

    Google Scholar 

  11. Beanlands DS, Akyurekli Y and Keon WJ. Prednisone in the management of exit block. In Meere C (ed), Proceedings of the VIth World Symposium on Cardiac Pacing, Montreal, PACESYMP, 1979, Chapter 80-3

    Google Scholar 

  12. Irnich W. Physikalische Uberlegungen zur elektrostimulation. Biomedizin Technik 3:97–104, 1973

    CrossRef  Google Scholar 

  13. Barold SS, Ong IS and Heile RA. Matching characteristics of pulse generator and electrodes. A clinicians concept of input and source impedance and their effect on demand function. In Meere C (ed), Proceedings of the VIth World Symposium on Cardiac Pacing, Montreal, PACESYMP, 1979, Chapter 34-3

    Google Scholar 

  14. Amundson D, McArthur W, MacCarter D and Mosharrafa M. Porous electrode-tissue interface. In C Meere (ed), Proceedings of the VIth World Symposium on Cardiac Pacing Montreal, PACESYMP, Chapter 29-16

    Google Scholar 

  15. Wilson GJ, MacGregor DC, Bobyn JD, Lixfeld W, Pillar RM, Miller SL and Silver MD. Tissue response to porous-surfaced electrodes: Basis for a new atrial lead design. In C Meere (ed), Proceedings of the VIth World Symposium on Cardiac Pacing, Montreal, PACESYMP, Chapter 29-12

    Google Scholar 

  16. Beck-Jansen P, Schuller H and Winther-Rasmussen S. Vitreous carbon electrodes in endocardial pacing. In C Meere (ed), Proceedings of the VIth World Symposium on Cardiac Pacing, Montreal, PACESYMP, Chapter 29-9

    Google Scholar 

  17. Schaldach M, Bolz A, Breme J, Hubmann M and Hardt R. Acute and long-term sensing and pacing performance of pacemaker leads having titanium nitride electrode tips. In Antonioli E, Aubert AE and Ector H (eds), Pacemaker Leads 1991, Amsterdam, Elsevier, 1991, pp. 441–450

    Google Scholar 

  18. Del Bufalo AGA, Schlaepfer J, Fromer M and Kappenberger L. Acute and long-term ventricular stimulation with a new iridium oxide-coated electrode. PACE 16(6):1240–1244, 1993

    CAS  Google Scholar 

  19. Stokes KB, Graf JE and Wiebusch WA. Drug-eluting electrodes-improved pacemaker performance. In Potvin AR and Potvin JH (eds), Frontiers of Engineering in Health Care-1982. Proceedings, Fourth Annual Conference IEEE Engineering in Medicine and Biology Society, pp. 499–502, 1982

    Google Scholar 

  20. Stokes KB, Bornzin GA. and Wiebusch, WA. A steroid-eluting, low-threshold, low-polarizing electrode. In Steinbach K (ed) , Cardiac Pacing, Darmstadt, Steinkopff Verlag, pp. 369–376, 1983

    Google Scholar 

  21. Mond H and Stokes K. The Electrode-Tissue Interface: The Revolutionary Role of Steroid Elution. PACE 15(l):95–107, 1992

    CAS  Google Scholar 

  22. Stokes K and Anderson J. Low Threshold Leads: The Effect Of Steroid Elution. In Antonioli GE (ed), Pacemaker Leads, Amsterdam, Elsevier, 537–542, 1991

    Google Scholar 

  23. Thevenet A, Hodges PC and Lillehei CW. Use of myocardial electrode inserted percutaneously for control of complete atrioventricular block by artificial pacemaker. Dis Chest 34:621–631, 1958

    CAS  Google Scholar 

  24. Dawson WW (ed). Electrode materials study, contract number NIH-71-2286, Tenth Quarterly Report, Nov. 1973–Jan. 1974

    Google Scholar 

  25. Johnson PF, Bernstein JJ, Hunter G, Dawson WW and Hench LL. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology and histology. J Biomed Mater Res 11:637–656, 1977

    CAS  CrossRef  Google Scholar 

  26. Maiolino P, Del Bene P, Cecci A, Cappelletti F, Pauletti M, Al Bunni M and Audoglio R. Titanium oxide electrode: 60 Months clinical experience of low energy pacing. In Antonioli GE, Aubert AE and Ector H (eds), Pacemaker Leads 1991, Amsterdam, Elsevier, pp. 491–496, 1991

    Google Scholar 

  27. Audoglio R and Gatti AM. Non-stoichiometric titanium oxide: Why is it a so effective material for low energy pacing? In Antonioli GE, Aubert AE and Ector H (eds), Pacemaker Leads 1991, Amsterdam, Elsevier, pp. 491–496, 1991

    Google Scholar 

  28. Pandolfino JE, Richter JE, Ours T, Guardino JM, Chapman J, and Kahrilas PJ. Ambulatory esophageal pH monitoring using a wireless system. Am J Gastroenterol 98:740–749, 2003

    CrossRef  Google Scholar 

  29. Najafi N and Ludomirsky A. Initial Animal Studies of a Wireless, Batteryless, MEMS Implant for Cardiovascular Applications. Biomedical Microdevices 6:61–65, 2004

    CrossRef  Google Scholar 

  30. Stangel K, Kolnsberg S, Hammerschmidt D, Hosticka BJ, Trieu HK, and Mokwa W. A programmable intraocular CMOS pressure sensor system implant. IEEE J Solid-State Circuits 36:1094–1100, 2001

    CrossRef  Google Scholar 

  31. Steinhaus D, Reynolds DW, Gadler F, Kay GN, Hess MF, and Bennett T. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure. Pacing Clin Electrophysiol 28:747–53, 2005

    CrossRef  Google Scholar 

  32. Chow AY, Chow VY, Packo K, Pollack J, Peyman G, and Schuchard R, The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469, 2004

    CrossRef  Google Scholar 

  33. Liu W, McGucken E, Cavin R, Clements M, Vichienchom K, Demarco C, Humayun M, de Juan E, Weiland J, and Greenberg R. A retinal prosthesis to benefit the visually impaired. In Teodorescu N (ed), Intelligent System and Techniques in Rehabilitation Engineering, CRC Press, 99, pp. 31–87, 2000

    Google Scholar 

  34. D’Lima DD, Townsend CP, Arms SW, Morris BA, and Colwell CW. An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces. J Bio-Mechanics 38:299–304, 2005.

    Google Scholar 

  35. Kirking B, Krevolin J, Townsend C, Colwell CW Jr, and D'Lima DD. A multiaxial force-sensing implantable tibial prosthesis. J Biomechanics 39:1744–1751, 2006

    CrossRef  Google Scholar 

  36. Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 28:1231–1239, 2005

    CrossRef  Google Scholar 

  37. Gross TM, Bode BW, Einhorn D, Kayne DM, Reed JH, White NH, and Mastrototaro JJ. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol Ther 2:49–56, 2000

    CAS  CrossRef  Google Scholar 

  38. Garg SK, Schwartz S, and Edelman SV. Improved Glucose excursions using an implantable real-time continuous glucose sensor in adults with type 1 diabetes. Diabetes Care 27:734–738, 2004

    CrossRef  Google Scholar 

  39. Bashir R. BioMEMS: State of the art in detection and future prospects, Adv Drug Delivery Rev 56:1565–1586, 2004

    CAS  CrossRef  Google Scholar 

  40. Toner M and Irimia D. Blood-on-a-Chip. Annu Rev Biomed Eng 7:77–103, 2005

    CAS  CrossRef  Google Scholar 

  41. Lee K. The development of highly functional cartridge for rapid detection of microbial contaminants. MS Thesis, Purdue University, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Mercado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mercado, L., Carney, J.K., Ebert, M.J., Hareland, S.A., Bashir, R. (2009). Digital Health and Bio-Medical Packaging. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78219-5_19

Download citation