Advertisement

Embedded Passives

  • Dok Won Lee
  • Liangliang Li
  • Shan X. Wang
  • Jiongxin Lu
  • C. P. Wong
  • Swapan K. Bhattacharya
  • John Papapolymerou

Abstract

Driven by ever growing demands of miniaturization, increased functionality, high performance, and low cost for microelectronic products and packaging, new and unique solutions in IC and system integration, such as system-on-chip (SOC), system-in-package (SiP), system-on-package (SOP), have been hot topics recently. Despite the high level of integration, the number of discrete passive components (resistors, capacitors, or inductors) remains very high. In a typical microelectronic product, about 80% of the electronic components are passive components, which are unable to add gain or perform switching functions in circuit performance, but these surface-mounted discrete components occupy over 40% of the printed circuit/wiring board (PCB/PWB) surface area and account for up to 30 percent of solder joints and up to 90 percent of the component placements required in the manufacturing process. Embedded passives, an alternative to discrete passives, can address these issues associated with discrete counterparts, including substrate board space, cost, handling, assembly time, and yield [1, 2]. Figure 14.1 schematically shows an example of realization of embedded passive technology by integrating resistor and capacitor films into the laminate substrates.
Fig. 14.1

Schematic representation of the size advantages of the embedded passives as compared to discrete passives

By removing these discrete passive components from the substrate surface and embedding them into the inner layers of substrate board, embedded passives can provide many advantages such as reduction in size and weight, increased reliability, improved performance and reduced cost, which have driven a significant amount of effort during the past decade for this technology. This chapter provides a review on most recent development in embedded inductors, capacitors, and resistors.

Keywords

Passives magnetic inductor quality factor embedded capacitor composites thin film resistor 

References

  1. 1.
    Ulrich RK, Schaper LW (2003) Integrated passive component technology. IEEE Press, Wiley-Interscience, Hoboken, NJ, USACrossRefGoogle Scholar
  2. 2.
    Prymark J, Bhattacharya S, Paik K, Tummala RR (2001) Fundamentals of microsystems packaging. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
  4. 4.
    Yue CP, Ryu C, Lau J, Lee TH, Wong SS (1996) A physical model for planar spiral inductors on silicon. IEEE Int Electron Devices Meeting, San Francisco, pp 155–158Google Scholar
  5. 5.
    Mohan SS, Yue CP, Hershenson M, Lee TH, Wong SS (1998) Modeling and characterization of on-chip transformers. IEEE Int Electron Devices Meeting, San Francisco, pp 531–534Google Scholar
  6. 6.
    Mohan SS, Hershenson M, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid-state Circuits 34:1419–1424Google Scholar
  7. 7.
    Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  8. 8.
    Soohoo RF (1979) Magnetic thin film inductors for integrated circuit applications. IEEE Trans Magn 15:1803–1805CrossRefGoogle Scholar
  9. 9.
    Gardner DS, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S (2007) Integrated on-chip inductors with magnetic films. IEEE Trans Magn 43:2615–2617CrossRefGoogle Scholar
  10. 10.
    Prabhakaran S, Sullivan CR, Venkatachalam K (2003) Measured electrical performance of V-groove inductors for microprocessor power delivery. IEEE Trans Magn 39:3190–3192CrossRefGoogle Scholar
  11. 11.
    Crawford AM, Gardner DS, Wang SX (2002) High-frequency microinductors with amorphous magnetic ground planes. IEEE Trans Magn 38:3168–3170CrossRefGoogle Scholar
  12. 12.
    Viala B, Couderc S, Royet AS, Ancey P, Bouche G (2005) Bidirectional ferromagnetic spiral inductors using single deposition. IEEE Trans Magn 41:3544–3549CrossRefGoogle Scholar
  13. 13.
    Zhuang Y, Rejaei B, Boellaard E, Vroubel M, Burghartz JN (2003) Integrated solenoid inductors with patterned sputter-deposited Cr/Fe10Co90/Cr ferromagnetic cores. IEEE Electron Device Lett 24:224–226CrossRefGoogle Scholar
  14. 14.
    Lee DW, Hwang KP, Wang SX (2008) Fabrication and analysis of high-performance integrated inductor with magnetic core. IEEE Trans Magn 44Google Scholar
  15. 15.
    Kittel C (1996) Introduction to solid state physics, 7th ed. Wiley, New YorkGoogle Scholar
  16. 16.
    O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley, New YorkGoogle Scholar
  17. 17.
    Riet EV, Roozeboom F (1997) Ferromagnetic resonance and eddy currents in high-permeable thin films. J Appl Phys 81:350–354CrossRefGoogle Scholar
  18. 18.
    Lee DW, Wang SX (2006) Multiple magnetic resonances in permeability spectra of thick CoTaZr films. J Appl Phys 99:08F109-1-3Google Scholar
  19. 19.
    Yamaguchi M, Baba M, Arai KI (2001) Sandwich-type ferromagnetic RF integrated inductor. IEEE Trans Microwave Theory and Tech 2331–2335Google Scholar
  20. 20.
    Shirakawa K, Kurata H, Kasuya M, Ohnuma S, Toryu J, Murakami K (1993) Thin film inductor with multilayer magnetic core. IEEE Transl J Magn Jpn 169–176Google Scholar
  21. 21.
    Kurata H, Shirakawa K, Nakazima O, Murakami K (1994) Solenoid-type thin-film micro-transformer. IEEE Transl J Magn Jpn 9:90–94CrossRefGoogle Scholar
  22. 22.
    Li L, Crawford AM, Wang SX, Marshall AF, Mao M, Thomas S, Bubber R (2005) Soft magnetic granular material Co-Fe-Hf-O for micromagnetic device applications. J Appl Phys 97:10F907-1-3Google Scholar
  23. 23.
    Shimada Y, Yamaguchi M, Ohnuma S, Itoh T, Li WD, Ikeda S, Kim KH, Nagura H (2003) Granular thin films with high RF permeability. IEEE Trans Magn 39:3052–3056CrossRefGoogle Scholar
  24. 24.
    Li L (2007) Nanogranular soft magnetic materials and on-package integrated inductors. Ph.D thesis, Stanford University, Stanford, CA, USAGoogle Scholar
  25. 25.
    Sun NX, Wang SX, Silva TJ, Kos AB (2002) High-frequency behavior and damping of Fe-Co-N-based high-saturation soft magnetic films. IEEE Trans Magn 38:146–150CrossRefGoogle Scholar
  26. 26.
    Ikeda K, Kobayashi K, Fujimoto M (2002) Multilayer nanogranular magnetic thin films for GHz applications. J Appl Phys 92:5395–5400CrossRefGoogle Scholar
  27. 27.
    Ohnuma S, Kobayashi N, Masumoto T, Mitani S, Fujimori H (1999) Magnetostriction and soft magnetic properties of (Co1-xFex)-Al-O granular films with high electrical resistivity. J Appl Phys 85:4574–4576CrossRefGoogle Scholar
  28. 28.
    Thompson MT (1999) Inductance calculation techniques – Part II: Approximations and handbook methods. Power Control and Intelligent Motion 25:40–45Google Scholar
  29. 29.
    Li L, Lee DW, Wang SX, Hwang KP, Min Y, Mao M, Schneider T, Bubber R (2007) Tensor nature of permeability and its effects in inductive magnetic devices. IEEE Trans Magn 43:3168–3170Google Scholar
  30. 30.
    Ansoft Corporation (2007) Ansoft student licensing program, PittsburgGoogle Scholar
  31. 31.
    Lee DW, Wang SX (2008) Effects of geometries on permeability spectra of CoTaZr magnetic cores for high frequency applications. J Appl Phys 103:07E907-1-3Google Scholar
  32. 32.
    Chen DX, Pardo E, Sanchez A (2002) Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans Magn 38:1742–1752CrossRefGoogle Scholar
  33. 33.
    Chen DX, Pardo E, Sanchez A (2005) Demagnetizing factors for rectangular prisms. IEEE Trans Magn 41:2077–2088CrossRefGoogle Scholar
  34. 34.
    Riet EV, Klaassens W, Roozeboom F (1997) On the origin of uniaxial anisotropy in nanocrystalline soft-magnetic materials. J Appl Phys 81:806–814CrossRefGoogle Scholar
  35. 35.
    Li L, Wang SX, Hwang KP, Min Y, Mao M, Schneider T, Bubber R (2006) Package compatibility and substrate dependence of granular soft magnetic material CoFeHfO developed by reactive sputtering. J Appl Phys 99:08M301-1-3Google Scholar
  36. 36.
    Li M, Wang GC, Min HG (1998) Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. J Appl Phys 83:5313–5320CrossRefGoogle Scholar
  37. 37.
    Harrington RF (1961) Time-harmonic electromagnetic fields. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Fukuda Y, Inoue T, Mizoguchi T, Yatabe S, Tachi Y (2003) Planar inductor with ferrite layers for DC-DC converter. IEEE Trans Magn 39:2057–2061CrossRefGoogle Scholar
  39. 39.
    Brandon EJ, Wesseling E, White V, Ramsey C, Del Castillo L, Lieneweg U (2003) Fabrication and characterization of microinductors for distributed power converters. IEEE Trans Magn 39:2049–2056CrossRefGoogle Scholar
  40. 40.
    Yamaguchi M, Bae S, Kim KH, Tan K, Kusumi T, Yamakawa K (2005) Ferromagnetic RF integrated inductor with closed magnetic circuit structure. IEEE MTT-S Int Microwave Symp Digest, Long Beach, pp 351–354Google Scholar
  41. 41.
    Frommberger M, Schmutz C, Tewes M, McCord J, Hartung W, Losehand R, Quandt E (2005) Integration of crossed anisotropy magnetic core into toroidal thin-film inductors. IEEE Trans Microw Theory Tech 53:2096–2100CrossRefGoogle Scholar
  42. 42.
    Orlando B, Hida R, Cuchet R, Audoin M, Viala B, Pellissier-Tanon D, Gagnard X, Ancey P (2006) Low-resistance integrated toroidal inductor for power management. IEEE Trans Magn 42:3374–3376CrossRefGoogle Scholar
  43. 43.
    Lee DW, Hwang KP, Wang SX (2008) Design and fabrication of integrated solenoid inductors with magnetic cores. 58th Electronic Components and Technology Conference, Lake Buena Vista, pp. 701–705Google Scholar
  44. 44.
    Brandon J, Wesseling E, Chang V, Kuhn W (2003) Printed microinductors and flexible substrates for power applications. IEEE Trans Comp Package Technol 26:517–523CrossRefGoogle Scholar
  45. 45.
    Waffenschmidt E, Ackermann B, Wille M (2005) Integrated ultra thin flexible inductors for low power converters. IEEE 36th Power Electronics Specialists Conf. (PESC '05), Recife, pp 1528–1534Google Scholar
  46. 46.
    Sato F, Ono T, Wako N, Arai S, Ichinose T, Oba Y, Kanno S, Sugawara E, Yamaguchi M, Matsuki H (2004) All-in-one package ultracompact micropower module using thin-film inductor. IEEE Trans Magn 40:2029–2031CrossRefGoogle Scholar
  47. 47.
    Li L, Lee DW, Hwang KP, Min Y, Hizume T, Tanaka M, Mao M, Schneider T, Bubber R, Wang SX. Small Resistance and High Q Magnetic Integrated Inductors on PCB. Submitted to IEEE Trans Adv PackGoogle Scholar
  48. 48.
    Li L, Lee DW, Mao M, Schneider T, Bubber R, Hwang KP, Min Y, Wang SX (2007) High-frequency responses of granular CoFeHfO and amorphous CoZrTa magnetic materials. J Appl Phys 101:123912-1-4Google Scholar
  49. 49.
    Ghahary A (2004) Fully integrated DC-DC converters. Power Electronics Technology:24–27Google Scholar
  50. 50.
    Tohge N, Takahashi S, Minami T (1991) Preparation of PbZrO3-PbTiO3 ferroelectric thin films by the sol-gel process. J Am Ceramic Soc 74(1):67–71CrossRefGoogle Scholar
  51. 51.
    Gregorio R, Cestari M, Bernardino FE (1996) Dielectric behavior of thin films of beta-PVDF/PZT and beta-PVDF/BaTiO3 composites. J Mater Sci 31:2925–2930CrossRefGoogle Scholar
  52. 52.
    Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804–3806CrossRefGoogle Scholar
  53. 53.
    Mazur K (1995) Polymer-ferroelectric ceramic composites in ferroelectric polymers: chemistry, physics, and applications. In: Nalwa HS (ed) Marcel Dekker Inc., New YorkGoogle Scholar
  54. 54.
    Dasgupta DK, Doughty K (1988) Polymer-ceramic composite materials with high dielectric constants. Thin Solid Films 158:93–105CrossRefGoogle Scholar
  55. 55.
    Liang S, Chong S, Giannelis E (1998) Barium titanate/epoxy composite dielectric materials for integrated thin film capacitors. Proceedings of 48th Electronic Components and Technology Conference, pp 171–175Google Scholar
  56. 56.
    Windlass H, Raj PM, Balaraman D, Bhattacharya SK, Tummala RR (2001) Processing of polymer-ceramic nanocomposites for system-on-package applications. Proceedings of the 51st Electronic Components and Technology Conference, pp 1201–1206Google Scholar
  57. 57.
    Rao Y, Ogitani S, Kohl P, Wong CP (2002) Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J Appl Polymer Sci 83:1084–1090CrossRefGoogle Scholar
  58. 58.
    Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625–1629CrossRefGoogle Scholar
  59. 59.
    Cho SD, Lee JY, Hyun JG, Paik KW (2004) Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Mater Sci Eng B 110(3):233–239CrossRefGoogle Scholar
  60. 60.
    Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluofoethylene) copolymer. Science 280:2101–2104CrossRefGoogle Scholar
  61. 61.
    Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polymer Sci 92:2228–2231CrossRefGoogle Scholar
  62. 62.
    Arbatti M, Shan XB, Cheng ZY (2007) Ceramic-polymer composites with high dielectric constant. Adv Mater 19:1369–1372CrossRefGoogle Scholar
  63. 63.
    Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005CrossRefGoogle Scholar
  64. 64.
    Rao Y, Wong CP, Xu J (2005) Ultra high k polymer metal composite for embedded capacitor application. US Patent 6864306Google Scholar
  65. 65.
    Pecharroman C, Moya JS (2000) Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv Mater 12:294–297CrossRefGoogle Scholar
  66. 66.
    Xu J, Wong CP (2005) Low loss percolative dielectric composite. Appl Phys Lett 87:082907CrossRefGoogle Scholar
  67. 67.
    Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/Polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816CrossRefGoogle Scholar
  68. 68.
    Choi HW, Heo YW, Lee JH, Kim JJ, Lee HY, Park ET, Chung YK (2006) Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethylmethacrylate composites. Appl Phys Lett 89:132910CrossRefGoogle Scholar
  69. 69.
    Xu J, Wong CP (2004) Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics. Proceedings of the 54th IEEE Electronic Components and Technology Conference, Las Vegas, NV, USA, pp 536–541Google Scholar
  70. 70.
    Lu J, Moon KS, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16(16):1543–1548CrossRefGoogle Scholar
  71. 71.
    Lu J, Moon KS, Wong CP (2006) Development of novel silver nanoparticles/polymer composites as high k polymer matrix by in-situ photochemical method. IEEE Proceedings of the 56th Electronic Components and Technology Conference, San Diego, CA, pp 1841–1846Google Scholar
  72. 72.
    Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ (2005) High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv Mater 17:1777–1781CrossRefGoogle Scholar
  73. 73.
    Shen Y, Lin Y, Li M, Nan C-W (2007) High Dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19:1418–1422CrossRefGoogle Scholar
  74. 74.
    Frechette MF, Trudeau ML, Alamdari HD, Boily S (2004) Introductory remarks on nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 11:808–818CrossRefGoogle Scholar
  75. 75.
    Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. John Wiley & Sons, Inc., Hoboken, New Jersey, USAGoogle Scholar
  76. 76.
    Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal-structure on particle-size in BaTiO3. J Am Ceramic Soc 72:1555–1558CrossRefGoogle Scholar
  77. 77.
    Leonard MR, Safari A (1996) Crystallite and grain size effects in BaTiO3. Proceedings of the IEEE 10th International Symposium on Ferroelectric Applications 2:1003–1005CrossRefGoogle Scholar
  78. 78.
    Bhattacharya SK, Tummala RR (2000) Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J Mater Sci: Mater Electron 11:253–268CrossRefGoogle Scholar
  79. 79.
    Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, Xu HS, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284–287CrossRefGoogle Scholar
  80. 80.
    Wang J, Shen Q, Yang C, Zhang Q (2004) High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligmer. Macromolecules 37:2294–2298CrossRefGoogle Scholar
  81. 81.
    Lu J, Wong CP (2007) Tailored dielectric properties of high-k polymer composites via nanoparticle surface modification for embedded passives applications. IEEE Proceedings of the 57th Electronic Components and Technology Conference, Reno, NV, USA, pp 1033–1039CrossRefGoogle Scholar
  82. 82.
    Lu J, Wong CP Manuscript in preparationGoogle Scholar
  83. 83.
    Ulrich R, Schaper L (eds) (2003) Integrated passive component technology. IEEE Press, New YorkGoogle Scholar
  84. 84.
    Wasserman Y (1995) Integrated single-wafer RP solutions for 0.25-micron technologies. IEEE Trans-CPMT-A 17(3):346–351Google Scholar
  85. 85.
    Wang J, Davis MK, Hilburn R, Clouser S (2003) Power dissipation of embedded resistors. 2003 IPC Printed Circuits Expo, Long Beach, CA, USA, March 23–27Google Scholar
  86. 86.
    Horst S, Bhattacharya SK, Johnston S, Papapolymerou J, Tentzeris M (2006) Modeling and characterization of thin film broadband resistors on LCP for RF applications. 56th Electronic Components and Technology Conference, San Diego, CA, USA, pp 1751–1755Google Scholar
  87. 87.
    Horst S, Anagnostou D, Ponchak G, Tentzeris E, Papapolymerou J (2007) Beam-shaping of planar array antennas using integrated attenuators. 57th Electronic Components and Technology Conference, Reno, NV, USA, pp 165–168CrossRefGoogle Scholar
  88. 88.
    Horst S, Bairavasubramanian R, Papapolymerou J, Tentzeris M (2007) Modified Wilkinson power divider for millimeter-wave integrated circuits. IEEE MTT 55(11): 2439–2446CrossRefGoogle Scholar
  89. 89.
    Bhattacharya S, Tummala R (2000) Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J Mater Sci: Mater Electron 11(3): 253–268CrossRefGoogle Scholar
  90. 90.
    iNEMI 2004 Roadmap [www.iNEMI.org]
  91. 91.
    Halliday D, Resnick R, Walker J (1997) Fundamentals of physics. John Wiley & Sons, New YorkGoogle Scholar
  92. 92.
    Bhattacharya S (ed) (1986) Metal-filled polymers: properties and applications. Marcel Dekker, Inc., New YorkGoogle Scholar
  93. 93.
    Coates K, Chien CP, Hsiao YYR, Kovach DJ, Tang CH, Tanielian MH (1998) Development of thin film resistors for use in multichip modules. 1998 International Conference on Multichip Modules and High Density Packaging, IEEE, pp 490–495Google Scholar
  94. 94.
    Shibuya A, Matsui K, Takahashi K, Kawatani A (2001) Embedded TiNxOy thin-film resistors in a build-up CSP for 10 Gbps optical transmitter and receiver modules. Proceedings of the 51st Electronic Components and Technology Conference, pp 847–851Google Scholar
  95. 95.
    Lee KJ, Damani M, Pucha R, Bhattacharya SK, Sitaraman S, Tummala R (2007) Reliability modeling and assessment of embedded capacitors on organic substrates. IEEE Transactions on Component and Packaging Technology. 30(1):152–162CrossRefGoogle Scholar
  96. 96.
    Koiwa I, Usada M, Osaka T (1990) Effect of heat-treatment on the structure and resistivity of electroless Ni-W-P alloy films. J Electrochem Soc 137(11):1222–1228Google Scholar
  97. 97.
    Aoki H (1991) Study of mass production of low Ohm metal film resistors prepared by electroless plating. IEICE Transactions E. 74(7):2049–2054Google Scholar
  98. 98.
    Chahal P, Tummala R, Allen M, White G (1998) Electroless Ni-P and Ni-W-P thin film resistors for MCM-L based technologies. ECTC 232–239Google Scholar
  99. 99.
    Bhattacharya SK, Varadarajan M, Chahal P, Jha G, Tummala R (2007) A novel electroless plating for embedding thin film resistors on BCB. J Electron Mater 36(3):242–244CrossRefGoogle Scholar
  100. 100.
    Dhar S, Chakrabarti S (1996) Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts. Semicond Sci Technol 11:1231–1234CrossRefGoogle Scholar
  101. 101.
    Grzyb J, Klemm M, Troster G (2003) MCM-D/L Technology for Realization of Low Cost System-on-Package Concept at 60–80 GHz. 33rd IEEE European Microwave Conference, Munich, Germany, pp 963–966Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dok Won Lee
    • 1
  • Liangliang Li
  • Shan X. Wang
  • Jiongxin Lu
  • C. P. Wong
  • Swapan K. Bhattacharya
  • John Papapolymerou
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations