Advertisement

Thermal Interface Materials

Abstract

Increasing electronic device performance has historically been accompanied by increasing power and increasing on-chip power density both of which present a cooling challenge. Thermal Interface Material (TIM) plays a key role in reducing the package thermal resistance and the thermal resistance between the electronic device and the external cooling components. This chapter reviews the progress made in the TIM development in the past five years. Rheology based modeling and design is discussed for the widely used polymeric TIMs. The recently emerging technology of nanoparticles and nanotubes is also discussed for TIM applications. This chapter also includes TIM testing methodology and concludes with suggestion for the future TIM development directions.

Keywords

Thermal resistance density factor thermal interface materials (TIMs) rheology 

References

  1. 1.
    M.M. Yovanovich, and E.E. Marotta, “Thermal Spreading and Contact Resistances,” in Heat Transfer Handbook, A. Bejan and A.D. Kraus eds., John Wiley & Sons, Hoboken, New Jersey, 261–395, 2003Google Scholar
  2. 2.
    C.V. Madhusudana, Thermal Contact Conductance, Springer-Veralag, New York, 1996Google Scholar
  3. 3.
    A. Iwabuchi, T. Shimizu, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta, and K. Sadamori, “The Development of a Vikers-Type Hardness Tester for Cryogenic Temperatures down to 4.2 K,” Cryogenics, 36(2), 75–81, 1996CrossRefGoogle Scholar
  4. 4.
    M.A. Lambert, and L.S. Fletcher, “Thermal Contact Conductance of Non-flat, Rough, Metallic Coated Metals,” Journal of Heat Transfer, 124, 405–412, 2002CrossRefGoogle Scholar
  5. 5.
    R. Prasher, “Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials,” Journal of Heat Transfer, 123, 969–975, 2001CrossRefGoogle Scholar
  6. 6.
    R. Mahajan, C-P. Chiu, and G. Chrysler, “Cooling a Chip,” Proceedings of IEEE, 94(8), 1476–1486, 2006CrossRefGoogle Scholar
  7. 7.
    A. Watwe, and R. Prasher, “Spreadsheet Tool for Quick-turn 3D Numerical Modeling of Package Thermal Performance with Non-Uniform Die Heating,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Paper No. 2-16-7-5, New York, November 11–16, 2001Google Scholar
  8. 8.
    J. Torresola, G. Chrysler, C. Chiu, R. Mahajan, D. Grannes, R. Prasher, and A. Watwe, “Density Factor Approach to Representing Die Power Map on Thermal Management,” IEEE Transactions on Advanced Packaging, 28(4), 659–664, 2005CrossRefGoogle Scholar
  9. 9.
    R. Mahajan, C-P. Chiu, and R. Prasher, “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials,” Electronics Cooling, 10(1), 2004Google Scholar
  10. 10.
    R.S. Prasher, “Thermal Interface Materials: Historical Perspective, Status and Future Directions,” Proceedings of IEEE, 98(8), 1571–1586, 2006CrossRefGoogle Scholar
  11. 11.
    R.S. Prasher, P. Koning, J. Shipley, and A. Devpura, “Dependence of Thermal Conductivity and Mechanical Rigidity of Particle Laden Polymeric Thermal Interface Materials on Particle Volume Fraction,” Journal of Electronics Packaging, 125(3), 386–391, 2003CrossRefGoogle Scholar
  12. 12.
    R.S. Prasher, J. Shipley, S. Prstic, P. Koning, and J-L. Wang, “Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials,” Journal of Heat Transfer, 125(6), 1170–1177, 2003CrossRefGoogle Scholar
  13. 13.
    R.S. Prasher, “Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface Material,” IEEE Transactions on Component and Packaging Technologies, 28(2), 230–237, 2005CrossRefGoogle Scholar
  14. 14.
    R.S. Prasher, and J.C. Matayabus, “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Materials,” IEEE Transactions on Components and Packaging Technology, 27(4), 702–709, 2004CrossRefGoogle Scholar
  15. 15.
    R. Prasher, and P. Phelan, “Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts,” Journal of Applied Physics, 100, 063538, 2006CrossRefGoogle Scholar
  16. 16.
    Y. He, “Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations,” Proceedings of the 30th North American Thermal Analysis Society Conference, Sept. 23–25, 2002, Pitsburgh, PA, USA, 499–504, 2002Google Scholar
  17. 17.
    A. Sepehr, and M. Sahimi, “Elastic Properties of Three-Dimensional Percolation Networks with Stretching and Bond-Bending Forces,” Physical Review B, 38(10), 7173–7176, 1988CrossRefGoogle Scholar
  18. 18.
    A.V. Shenoy, “Rheology of Filled Polymer System,” Kluwer Academic Publishers, MA, USA, pp. 1–390, 1999Google Scholar
  19. 19.
    T.L. Tansley, and D.S. Maddison, “Conductivity Degradation in Oxygen Polypyrrole,” Journal of Applied Physics, 69(11), 7711–7713, 1991CrossRefGoogle Scholar
  20. 20.
    C-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42, 93–100, 2002CrossRefGoogle Scholar
  21. 21.
    L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, “Effective Thermal Conductivity of Porous Solder Layers,” IEEE Transactions on Components and Packaging Technologies, 27(2), 259–267, 2004CrossRefGoogle Scholar
  22. 22.
    X. Hu, L. Jiang, and K. E. Goodson, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions”, Proceedings of Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 98–103, March 9–11, 2004, San Jose, CA, USAGoogle Scholar
  23. 23.
    P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, 87(21), 215502-1215502-4, 2001CrossRefGoogle Scholar
  24. 24.
    J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fisher, “Thermal Properties of Carbon Nanotubes and Nantube-based Materials,” Applied Physics A: Materials Science and Processing, 74, 339–343, 2002CrossRefGoogle Scholar
  25. 25.
    M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, “Carbon Nantube Composites for Thermal Management,” Applied Physics Letters, 80(2), 2767–2769, 2002CrossRefGoogle Scholar
  26. 26.
    E.T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the Science and Technology,” Composite Science and Technology, 61, 1899–1912, 2001CrossRefGoogle Scholar
  27. 27.
    C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading,” Applied Physics Letters, 84(21), 4248–4250, 2004CrossRefGoogle Scholar
  28. 28.
    C.-W. Nan, G. Liu, Y. Lin, and M. Li, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Applied Physics Letters, 85(16), 3549–3551, 2004CrossRefGoogle Scholar
  29. 29.
    S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. OZisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski , “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nature Materials, 2, 731–734, 2003CrossRefGoogle Scholar
  30. 30.
    R.S. Prasher, “Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes,” Physical Review B, 77, 075424, 2008CrossRefGoogle Scholar
  31. 31.
    X. Hu, L. Jiang, and K.E. Goodson, “Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions”, 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System, June 1–4, 2004, Las Vegas, NV, USAGoogle Scholar
  32. 32.
    J. Xu, and T.S. Fisher, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays,” 2004 Inter Society Conference on Thermal Phenomena, Las Vegas, 549–555, 2004Google Scholar
  33. 33.
    X. Hu, A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, “3-Omega Measurements Vertically Oriented Carbon Nanotubes on Silicon,” Journal of Heat Transfer, 128, 1109–1113, 2006CrossRefGoogle Scholar
  34. 34.
    J. Xu, and T.S. Fisher, “Thermal Contact Conductance Enhancement with Carbon Nanotube Arrays,” 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 13–20, Paper number IMECE2004-60185, 2004Google Scholar
  35. 35.
    T. Tong, Y. Zhao, L. Delzeit, Al. Kashani, M. Meyyappan, and A. Majumdar, Dense Vertically Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials, IEEE Transactions on Components and Packaging Technologies, 30(1), 92–100Google Scholar
  36. 36.
    P.C. Irwin, Y. Cao, A. Bansal, and L.S. Schadler, “Thermal and Mechanical Properties of Polyimide Nanocomposites,” 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 120–123, 2003Google Scholar
  37. 37.
    L. Fan, B. Su, J. Qu, and C.P. Wong, “Effects of Nano-sized Particles on Electrical and Thermal Conductivities of Polymer Composites,” 9th International Symposium on Advanced Packaging Materials, 193–199, 2004Google Scholar
  38. 38.
    S.A. Putnam, D.G. Cahill, B.J. Ash, and L.S. Schadler, “High-precision Thermal Conductivity Measurements as a Probe of Polymer/nanoparticle Interfaces,” Journal of Applied Physics, 94(10), 6785–6788, 2003CrossRefGoogle Scholar
  39. 39.
    R. Aoki, and C.-P. Chiu, “Testing apparatus for thermal interface materials,” Proceedings of the SPIE – The International Society for Optical Engineering, 3582, 1036–1041, 1999Google Scholar
  40. 40.
    G.L. Solbrekken, C.-P. Chiu, B. Byers, and D. Reichebbacher, “The Development of a Tool to Predict Package Level Thermal Interface Material Performance,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 48–54, 2000Google Scholar
  41. 41.
    “Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials,” ASTM D5470-93Google Scholar
  42. 42.
    C.-P. Chiu, G.L. Solbrekken, and T.M. Young, “Thermal Modeling and Experimental Validation of Thermal Interface Performance Between Non-Flat Surfaces,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 52–62, 2000Google Scholar
  43. 43.
    C.-P. Chiu, and G. Solbrekken, “Characterization of Thermal Interface Performance Using Transient Thermal Analysis Technique,” 1999 ISPS ConferenceGoogle Scholar
  44. 44.
    C.-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42(1), 93–100, 2002CrossRefGoogle Scholar
  45. 45.
    C.-P. Chiu, G.L. Solbrekken, V. LeBonheur, Y.E. Xu, “Application of Phase-Change Materials in Pentium® III and Pentium® III XeonTM Processor Cartridges,” Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507). Reston, VA, USA: IMAPS – Int. Microelectron. & Packaging Soc, 265–270, 2000Google Scholar
  46. 46.
    T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Cartridge Thermal Design of Pentium(R) III Processor for Workstation: Giga Hertz Technology Envelope Extension Challenges,” Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456). Piscataway, NJ, USA: IEEE, 65-71, 2000Google Scholar
  47. 47.
    T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Novel Thermal Validation Metrology Based on Non-Uniform Power Distribution for Pentium® III XeonTM Cartridge Processor Design with Integrated Level Two Cache,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 1181–1186, 2001Google Scholar
  48. 48.
    C.-P. Chiu, B. Chandran, K. Mello, and K. Kelley, “An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 91–97, 2001Google Scholar
  49. 49.
    L. Bharatham, W.S. Fong, C.J. Leong, and C.-P. Chiu, “A Study of Application Pressure on Thermal Interface Material Performance and Reliability on FCBGA Package, 2006 EMAPGoogle Scholar
  50. 50.
    E. Samson, S. Machiroutu, J.-Y. Chang, I. Santos, J. Hermarding, A. Dani, R. Prasher, D. Song, and D. Puffo, “Some Thermal Technology and Thermal Management Considerations in the Design of Next Generation IntelR Centrino™ Mobile Technology Platforms,” Intel Technology Journal, 9(1), 2005Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Intel CorporationUSA

Personalised recommendations