Skip to main content

Thermal Interface Materials

  • Chapter
Materials for Advanced Packaging

Abstract

Increasing electronic device performance has historically been accompanied by increasing power and increasing on-chip power density both of which present a cooling challenge. Thermal Interface Material (TIM) plays a key role in reducing the package thermal resistance and the thermal resistance between the electronic device and the external cooling components. This chapter reviews the progress made in the TIM development in the past five years. Rheology based modeling and design is discussed for the widely used polymeric TIMs. The recently emerging technology of nanoparticles and nanotubes is also discussed for TIM applications. This chapter also includes TIM testing methodology and concludes with suggestion for the future TIM development directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Yovanovich, and E.E. Marotta, “Thermal Spreading and Contact Resistances,” in Heat Transfer Handbook, A. Bejan and A.D. Kraus eds., John Wiley & Sons, Hoboken, New Jersey, 261–395, 2003

    Google Scholar 

  2. C.V. Madhusudana, Thermal Contact Conductance, Springer-Veralag, New York, 1996

    Google Scholar 

  3. A. Iwabuchi, T. Shimizu, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta, and K. Sadamori, “The Development of a Vikers-Type Hardness Tester for Cryogenic Temperatures down to 4.2 K,” Cryogenics, 36(2), 75–81, 1996

    Article  CAS  Google Scholar 

  4. M.A. Lambert, and L.S. Fletcher, “Thermal Contact Conductance of Non-flat, Rough, Metallic Coated Metals,” Journal of Heat Transfer, 124, 405–412, 2002

    Article  CAS  Google Scholar 

  5. R. Prasher, “Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials,” Journal of Heat Transfer, 123, 969–975, 2001

    Article  CAS  Google Scholar 

  6. R. Mahajan, C-P. Chiu, and G. Chrysler, “Cooling a Chip,” Proceedings of IEEE, 94(8), 1476–1486, 2006

    Article  Google Scholar 

  7. A. Watwe, and R. Prasher, “Spreadsheet Tool for Quick-turn 3D Numerical Modeling of Package Thermal Performance with Non-Uniform Die Heating,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Paper No. 2-16-7-5, New York, November 11–16, 2001

    Google Scholar 

  8. J. Torresola, G. Chrysler, C. Chiu, R. Mahajan, D. Grannes, R. Prasher, and A. Watwe, “Density Factor Approach to Representing Die Power Map on Thermal Management,” IEEE Transactions on Advanced Packaging, 28(4), 659–664, 2005

    Article  Google Scholar 

  9. R. Mahajan, C-P. Chiu, and R. Prasher, “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials,” Electronics Cooling, 10(1), 2004

    Google Scholar 

  10. R.S. Prasher, “Thermal Interface Materials: Historical Perspective, Status and Future Directions,” Proceedings of IEEE, 98(8), 1571–1586, 2006

    Article  CAS  Google Scholar 

  11. R.S. Prasher, P. Koning, J. Shipley, and A. Devpura, “Dependence of Thermal Conductivity and Mechanical Rigidity of Particle Laden Polymeric Thermal Interface Materials on Particle Volume Fraction,” Journal of Electronics Packaging, 125(3), 386–391, 2003

    Article  CAS  Google Scholar 

  12. R.S. Prasher, J. Shipley, S. Prstic, P. Koning, and J-L. Wang, “Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials,” Journal of Heat Transfer, 125(6), 1170–1177, 2003

    Article  CAS  Google Scholar 

  13. R.S. Prasher, “Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface Material,” IEEE Transactions on Component and Packaging Technologies, 28(2), 230–237, 2005

    Article  Google Scholar 

  14. R.S. Prasher, and J.C. Matayabus, “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Materials,” IEEE Transactions on Components and Packaging Technology, 27(4), 702–709, 2004

    Article  CAS  Google Scholar 

  15. R. Prasher, and P. Phelan, “Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts,” Journal of Applied Physics, 100, 063538, 2006

    Article  CAS  Google Scholar 

  16. Y. He, “Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations,” Proceedings of the 30th North American Thermal Analysis Society Conference, Sept. 23–25, 2002, Pitsburgh, PA, USA, 499–504, 2002

    Google Scholar 

  17. A. Sepehr, and M. Sahimi, “Elastic Properties of Three-Dimensional Percolation Networks with Stretching and Bond-Bending Forces,” Physical Review B, 38(10), 7173–7176, 1988

    Article  Google Scholar 

  18. A.V. Shenoy, “Rheology of Filled Polymer System,” Kluwer Academic Publishers, MA, USA, pp. 1–390, 1999

    Google Scholar 

  19. T.L. Tansley, and D.S. Maddison, “Conductivity Degradation in Oxygen Polypyrrole,” Journal of Applied Physics, 69(11), 7711–7713, 1991

    Article  CAS  Google Scholar 

  20. C-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42, 93–100, 2002

    Article  Google Scholar 

  21. L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, “Effective Thermal Conductivity of Porous Solder Layers,” IEEE Transactions on Components and Packaging Technologies, 27(2), 259–267, 2004

    Article  CAS  Google Scholar 

  22. X. Hu, L. Jiang, and K. E. Goodson, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions”, Proceedings of Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 98–103, March 9–11, 2004, San Jose, CA, USA

    Google Scholar 

  23. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, 87(21), 215502-1215502-4, 2001

    Article  CAS  Google Scholar 

  24. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fisher, “Thermal Properties of Carbon Nanotubes and Nantube-based Materials,” Applied Physics A: Materials Science and Processing, 74, 339–343, 2002

    Article  CAS  Google Scholar 

  25. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, “Carbon Nantube Composites for Thermal Management,” Applied Physics Letters, 80(2), 2767–2769, 2002

    Article  CAS  Google Scholar 

  26. E.T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the Science and Technology,” Composite Science and Technology, 61, 1899–1912, 2001

    Article  CAS  Google Scholar 

  27. C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading,” Applied Physics Letters, 84(21), 4248–4250, 2004

    Article  CAS  Google Scholar 

  28. C.-W. Nan, G. Liu, Y. Lin, and M. Li, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Applied Physics Letters, 85(16), 3549–3551, 2004

    Article  CAS  Google Scholar 

  29. S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. OZisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski , “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nature Materials, 2, 731–734, 2003

    Article  CAS  Google Scholar 

  30. R.S. Prasher, “Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes,” Physical Review B, 77, 075424, 2008

    Article  CAS  Google Scholar 

  31. X. Hu, L. Jiang, and K.E. Goodson, “Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions”, 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System, June 1–4, 2004, Las Vegas, NV, USA

    Google Scholar 

  32. J. Xu, and T.S. Fisher, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays,” 2004 Inter Society Conference on Thermal Phenomena, Las Vegas, 549–555, 2004

    Google Scholar 

  33. X. Hu, A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, “3-Omega Measurements Vertically Oriented Carbon Nanotubes on Silicon,” Journal of Heat Transfer, 128, 1109–1113, 2006

    Article  CAS  Google Scholar 

  34. J. Xu, and T.S. Fisher, “Thermal Contact Conductance Enhancement with Carbon Nanotube Arrays,” 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 13–20, Paper number IMECE2004-60185, 2004

    Google Scholar 

  35. T. Tong, Y. Zhao, L. Delzeit, Al. Kashani, M. Meyyappan, and A. Majumdar, Dense Vertically Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials, IEEE Transactions on Components and Packaging Technologies, 30(1), 92–100

    Google Scholar 

  36. P.C. Irwin, Y. Cao, A. Bansal, and L.S. Schadler, “Thermal and Mechanical Properties of Polyimide Nanocomposites,” 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 120–123, 2003

    Google Scholar 

  37. L. Fan, B. Su, J. Qu, and C.P. Wong, “Effects of Nano-sized Particles on Electrical and Thermal Conductivities of Polymer Composites,” 9th International Symposium on Advanced Packaging Materials, 193–199, 2004

    Google Scholar 

  38. S.A. Putnam, D.G. Cahill, B.J. Ash, and L.S. Schadler, “High-precision Thermal Conductivity Measurements as a Probe of Polymer/nanoparticle Interfaces,” Journal of Applied Physics, 94(10), 6785–6788, 2003

    Article  CAS  Google Scholar 

  39. R. Aoki, and C.-P. Chiu, “Testing apparatus for thermal interface materials,” Proceedings of the SPIE – The International Society for Optical Engineering, 3582, 1036–1041, 1999

    Google Scholar 

  40. G.L. Solbrekken, C.-P. Chiu, B. Byers, and D. Reichebbacher, “The Development of a Tool to Predict Package Level Thermal Interface Material Performance,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 48–54, 2000

    Google Scholar 

  41. “Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials,” ASTM D5470-93

    Google Scholar 

  42. C.-P. Chiu, G.L. Solbrekken, and T.M. Young, “Thermal Modeling and Experimental Validation of Thermal Interface Performance Between Non-Flat Surfaces,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 52–62, 2000

    Google Scholar 

  43. C.-P. Chiu, and G. Solbrekken, “Characterization of Thermal Interface Performance Using Transient Thermal Analysis Technique,” 1999 ISPS Conference

    Google Scholar 

  44. C.-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42(1), 93–100, 2002

    Article  Google Scholar 

  45. C.-P. Chiu, G.L. Solbrekken, V. LeBonheur, Y.E. Xu, “Application of Phase-Change Materials in Pentium® III and Pentium® III XeonTM Processor Cartridges,” Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507). Reston, VA, USA: IMAPS – Int. Microelectron. & Packaging Soc, 265–270, 2000

    Google Scholar 

  46. T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Cartridge Thermal Design of Pentium(R) III Processor for Workstation: Giga Hertz Technology Envelope Extension Challenges,” Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456). Piscataway, NJ, USA: IEEE, 65-71, 2000

    Google Scholar 

  47. T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Novel Thermal Validation Metrology Based on Non-Uniform Power Distribution for Pentium® III XeonTM Cartridge Processor Design with Integrated Level Two Cache,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 1181–1186, 2001

    Google Scholar 

  48. C.-P. Chiu, B. Chandran, K. Mello, and K. Kelley, “An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 91–97, 2001

    Google Scholar 

  49. L. Bharatham, W.S. Fong, C.J. Leong, and C.-P. Chiu, “A Study of Application Pressure on Thermal Interface Material Performance and Reliability on FCBGA Package, 2006 EMAP

    Google Scholar 

  50. E. Samson, S. Machiroutu, J.-Y. Chang, I. Santos, J. Hermarding, A. Dani, R. Prasher, D. Song, and D. Puffo, “Some Thermal Technology and Thermal Management Considerations in the Design of Next Generation IntelR Centrino™ Mobile Technology Platforms,” Intel Technology Journal, 9(1), 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Prasher PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prasher, R., Chiu, CP. (2009). Thermal Interface Materials. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78219-5_13

Download citation

Publish with us

Policies and ethics