Skip to main content

Stopover Duration Analysis with Departure Probability Dependent on Unknown Time Since Arrival

  • Chapter

Part of the Environmental and Ecological Statistics book series (ENES,volume 3)

Abstract

In stopover duration analysis for migratory birds, models with the probability of departure dependent upon time since arrival are useful if the birds are stopping over to replenish body fat. In capture–recapture studies, the exact time of arrival is not generally known, as a bird may not be captured soon after arrival, or it may not be captured at all. We present models which allow for the uncertain knowledge of arrival time, while providing estimates of the total number of birds stopping over, and the distribution and mean of true stopover times for the population.

Keywords

  • Age-related survival
  • Capture–recapture
  • Jolly–Seber model
  • Mark-recapture
  • migratory birds
  • residence time
  • Schwarz–Arnason model
  • Stopover duration
  • Survival curve

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-78151-8_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-78151-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary.

    Google Scholar 

  • Ålerstam T, Hedenström A (1998) The development of bird migration theory. Journal of Avian Biology 29:343–369.

    CrossRef  Google Scholar 

  • Ålerstam T, Lindström, Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. Pages 331–351 in Gwinner E. (eds) Bird Migration: The Physiology and Ecophysiology. Springer, Berlin, Germany.

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Burnham KP, Rexstad EA (1993) Modeling heterogeneity in survival rates of banded waterfowl. Biometrics 49:1194–1208.

    CrossRef  MATH  Google Scholar 

  • Catchpole EA, Morgan BJT (1997) Detecting parameter redundancy. Biometrika 84:187–196.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Catchpole EA, Kgosi PM, Morgan BJT (2001) On the near-singularity of models for animal recovery data. Biometrics 57:720–726.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Cormack RM (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438.

    MATH  Google Scholar 

  • Cormack RM (1992) Interval estimation for mark-recapture studies of closed populations. Biometrics 48:567–576.

    CrossRef  MathSciNet  Google Scholar 

  • Dinsmore SJ, Collazo JA (2001) The influence of body condition on local apparent survival of spring migrant sanderlings in coastal North Carolina. Condor 105:465–473.

    CrossRef  Google Scholar 

  • Efford MG (2005) Migrating birds stop over longer than usually thought: Comment. Ecology 86:3415–3418.

    CrossRef  Google Scholar 

  • Fredericksen M, Fox A, Madsen J, Colhoun K (2001) Estimating the total number of birds using a staging site. Journal of Wildlife Management 65:282–289.

    CrossRef  Google Scholar 

  • Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration – stochastic model. Biometrika 52:225–247.

    MATH  MathSciNet  Google Scholar 

  • Kaiser A (1995) Estimating turnover, movements and capture parameters of resting passerines in standardized capture–recapture studies. Journal of Applied Statistics 22:1039–1047.

    CrossRef  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecological Monographs 62:67–118.

    CrossRef  Google Scholar 

  • Pledger S, Schwarz CJ (2002) Modelling heterogeneity of survival in band recovery data using mixtures. Journal of Applied Statistics 29:315–327.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Pollock KH (1981) Capture–recapture models allowing for age-dependent survival and capture rates. Biometrics 37:521–529.

    CrossRef  MATH  Google Scholar 

  • Pradel R (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth. Biometrics 52:703–709.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Pradel R, Schaub M, Jenni L, Lebreton J-D (2005) Migrating birds stop over longer than usually thought: Reply. Ecology 86:3418–3419.

    CrossRef  Google Scholar 

  • Rice SM, Collazo JA, Alldredge MW, Harrington BA, Lewis, AR (2007) Local annual survival and seasonal residency rates of semipalmated sandpipers (Calidris pusilla) in Puerto Rico. The Auk 124:1397–1406 .

    Google Scholar 

  • Richter O, Söndgerath, D (1990) Parameter Estimation in Ecology. VCH Verlagsgesellschaft mbH, Weinham, Germany.

    Google Scholar 

  • Routledge RD, Smith GEJ, Sun L, Dawe N, Nygren E, Sedinger JS (1999) Estimating the size of a transient population. Biometrics 55:224–230.

    CrossRef  MATH  Google Scholar 

  • Schaub M, Pradel R, Jenni L, Lebreton J-D (2001) Migrating birds stop over longer than usually thought: An improved capture–recapture analysis. Ecology 82:852–859.

    Google Scholar 

  • Schwarz CJ (2001) The Jolly–Seber model: more than just abundance. Journal of Agricultural, Biological and Environmental Statistics 6:195–205.

    CrossRef  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Seber GAF (1965) A note on the multiple-recapture census. Biometrika 52:249–259.

    MATH  MathSciNet  Google Scholar 

  • Seber GAF (1982) The Estimation of Animal Abundance and Related Parameters. Second edition. Macmillan, New York, USA.

    Google Scholar 

  • Sidhu LA, Catchpole EA, Dann P (2007) Mark-recapture-recovery modeling and age-related survival in Little Penguins (Eudyptula minor). The Auk 124:815–827.

    Google Scholar 

  • Siler W (1979) A competing-risk model for animal mortality. Ecology 60:750–757.

    CrossRef  Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying song birds. Nature 423:704.

    Google Scholar 

  • Ydenberg RC, Butler RW, Lank DB, Smith BD, Ireland J (2004) Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proceedings of the Royal Society of London B 271:1263–1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Pledger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pledger, S., Efford, M., Pollock, K., Collazo, J., Lyons, J. (2009). Stopover Duration Analysis with Departure Probability Dependent on Unknown Time Since Arrival. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (eds) Modeling Demographic Processes In Marked Populations. Environmental and Ecological Statistics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78151-8_15

Download citation