Skip to main content

FoxP3 and Regulatory T Cells

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application

Abstract

Some regulatory T cells express the Foxp3 transcription factor and such Tregs have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to Forkhead motifs of about 1100 genes and the strength of binding increases when Foxp3-expressing T cells are stimulated by PMA and ionomycin. In Foxp3-expressing T cell hybridomas, Foxp3 binding to DNA does not lead to the activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions through association with T cell receptor-dependent transcription factors in a DNA-binding complex.

Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process does not require TGF-β signaling in the T cells but requires costimulatory signals. In contrast, the conversion of naïve T cells into Tregs in peripheral lymphoid tissue essentially depends on TGF-β and is inhibited by costimulation. In fact retinoic acid, produced by some dendritic cells, helps the conversion process by counteracting the negative impact of costimulation on the conversion process. Since AP-1 is produced after costimulation and appears to interfere with a Foxp3-NFAT transcription complex, it is of interest to note that retinoic acid interferes with AP-1-dependent transcription. Thus, retinoic acid may interfere with the negative impact of costimulation on Treg conversion by interfering with the generation and/or function of AP-1.

Peripherally converted Tregs have a stable Foxp3+ phenotype and in mice can survive for several months in the absence of the antigen that induced their formation. In fact the prospective induction of Tregs can be used to generate antigen-specific tolerance that relies on immunosuppression of neighboring CD4 and CD8 T cells by Foxp3+ Tregs in antigen-draining lymph nodes. The mechanisms of suppression may involve cytokines such as TGF-β and IL-10 but also other mechanisms that involve suppressive purine-metabolites such as adenosine or adenosine-monophosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Boehmer, H., and P. Kisielow. 2006. Negative selection of the T-cell repertoire: where and when does it occur? Immunol Rev 209:284–289.

    Article  Google Scholar 

  2. Rocha, B., and H. von Boehmer. 1991. Peripheral selection of the T cell repertoire. Science 251:1225–1228.

    Article  PubMed  CAS  Google Scholar 

  3. Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T. Takahashi, and T. Nomura. 2006. Foxp3CD25CD4 natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27.

    Article  PubMed  CAS  Google Scholar 

  4. von Boehmer, H., I. Aifantis, F. Gounari, O. Azogui, L. Haughn, I. Apostolou, E. Jaeckel, F. Grassi, and L. Klein. 2003. Thymic selection revisited: how essential is it? Immunol Rev 191:62–78.

    Article  Google Scholar 

  5. Khattri, R., T. Cox, S.A. Yasayko, and F. Ramsdell. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342.

    Article  PubMed  CAS  Google Scholar 

  6. Jaeckel, E., M.A. Lipes, and H. von Boehmer. 2004. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5:1028–1035.

    Article  PubMed  CAS  Google Scholar 

  7. Nakayama, M., N. Abiru, H. Moriyama, N. Babaya, E. Liu, D. Miao, L. Yu, D.R. Wegmann, J.C. Hutton, J.F. Elliott, and G.S. Eisenbarth. 2005. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223.

    Article  PubMed  CAS  Google Scholar 

  8. Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, and S. Sakaguchi. 1999. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326.

    PubMed  CAS  Google Scholar 

  9. Bruder, D., M. Probst-Kepper, A.M. Westendorf, R. Geffers, S. Beissert, K. Loser, H. von Boehmer, J. Buer, and W. Hansen. 2004. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 34:623–630.

    Article  PubMed  CAS  Google Scholar 

  10. Huehn, J., K. Siegmund, J.C. Lehmann, C. Siewert, U. Haubold, M. Feuerer, G.F. Debes, J. Lauber, O. Frey, G.K. Przybylski, U. Niesner, M. de la Rosa, C.A. Schmidt, R. Brauer, J. Buer, A. Scheffold, and A. Hamann. 2004. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 199:303–313.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen, W., K. Loser, A.M. Westendorf, D. Bruder, S. Pfoertner, C. Siewert, J. Huehn, S. Beissert, and J. Buer. 2006. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol 177:209–215.

    PubMed  CAS  Google Scholar 

  12. Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142.

    Article  PubMed  CAS  Google Scholar 

  13. Bachmann, M.F., G. Kohler, B. Ecabert, T.W. Mak, and M. Kopf. 1999. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131.

    PubMed  CAS  Google Scholar 

  14. Liu, W., A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B.F. de St Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, and J.A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711.

    Article  PubMed  CAS  Google Scholar 

  15. Kretschmer, K., I. Apostolou, D. Hawiger, K. Khazaie, M.C. Nussenzweig, and H. von Boehmer. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227.

    Article  PubMed  CAS  Google Scholar 

  16. Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341.

    Article  PubMed  CAS  Google Scholar 

  17. Wan, Y.Y., and R.A. Flavell. 2005. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102:5126–5131.

    Article  PubMed  CAS  Google Scholar 

  18. Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  19. Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336.

    Article  PubMed  CAS  Google Scholar 

  20. Jaeckel, E., H. von Boehmer, and M.P. Manns. 2005. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 54:306–310.

    Article  PubMed  CAS  Google Scholar 

  21. Tang, Q., K.J. Henriksen, M. Bi, E.B. Finger, G. Szot, J. Ye, E.L. Masteller, H. McDevitt, M. Bonyhadi, and J.A. Bluestone. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465.

    Article  PubMed  CAS  Google Scholar 

  22. Tarbell, K.V., S. Yamazaki, K. Olson, P. Toy, and R.M. Steinman. 2004. CD25+ CD4+ T Cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199:1467–1477.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, Y., M. Borde, V. Heissmeyer, M. Feuerer, A.D. Lapan, J.C. Stroud, D.L. Bates, L. Guo, A. Han, S.F. Ziegler, D. Mathis, C. Benoist, L. Chen, and A. Rao. 2006. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387.

    Article  PubMed  CAS  Google Scholar 

  24. Marson, A., K. Kretschmer, G.M. Frampton, E.S. Jacobsen, J.K. Polansky, K.D. MacIsaac, S.S. Levine, E. Fraenkel, H. von Boehmer, and R.A. Young. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935.

    Article  PubMed  CAS  Google Scholar 

  25. Bottini, N., T. Vang, F. Cucca, and T. Mustelin. 2006. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213.

    Article  PubMed  CAS  Google Scholar 

  26. von Boehmer, H. 2005. Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344.

    Article  Google Scholar 

  27. von Boehmer, H. 2004. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 84:201–238.

    Article  Google Scholar 

  28. Jordan, M.S., A. Boesteanu, A.J. Reed, A.L. Petrone, A.E. Holenbeck, M.A. Lerman, A. Naji, and A.J. Caton. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306.

    Article  PubMed  CAS  Google Scholar 

  29. Apostolou, I., A. Sarukhan, L. Klein, and H. von Boehmer. 2002. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763.

    PubMed  CAS  Google Scholar 

  30. Hsieh, C.S., Y. Liang, A.J. Tyznik, S.G. Self, D. Liggitt, and A.Y. Rudensky. 2004. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277.

    Article  PubMed  CAS  Google Scholar 

  31. Derbinski, J., A. Schulte, B. Kyewski, and L. Klein. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  32. Vafiadis, P., S.T. Bennett, J.A. Todd, J. Nadeau, R. Grabs, C.G. Goodyer, S. Wickramasinghe, E. Colle, and C. Polychronakos. 1997. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15:289–292.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson, M.S., E.S. Venanzi, L. Klein, Z. Chen, S.P. Berzins, S.J. Turley, H. von Boehmer, R. Bronson, A. Dierich, C. Benoist, and D. Mathis. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  34. Liston, A., D.H. Gray, S. Lesage, A.L. Fletcher, J. Wilson, K.E. Webster, H.S. Scott, R.L. Boyd, L. Peltonen, and C.C. Goodnow. 2004. Gene dosage – limiting role of aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200:1015–1026.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson, M.S., E.S. Venanzi, Z. Chen, S.P. Berzins, C. Benoist, and D. Mathis. 2005. The cellular mechanism of aire control of T cell tolerance. Immunity 23:227–239.

    Article  PubMed  CAS  Google Scholar 

  36. Tai, X., M. Cowan, L. Feigenbaum, and A. Singer. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162.

    Article  PubMed  CAS  Google Scholar 

  37. Klein, L., K. Khazaie, and H. von Boehmer. 2003. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 100:8886–8891.

    Article  PubMed  CAS  Google Scholar 

  38. Hao, Y., N. Legrand, and A.A. Freitas. 2006. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med 203:1643–1649.

    Article  PubMed  CAS  Google Scholar 

  39. Kretschmer, K., I. Apostolou, E. Jaeckel, K. Khazaie, and H. von Boehmer. 2006. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol Rev 212:163–169.

    Article  PubMed  CAS  Google Scholar 

  40. Apostolou, I., and H. Von Boehmer. 2004. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199:1401–1408.

    Article  PubMed  CAS  Google Scholar 

  41. Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Cárcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764.

    Google Scholar 

  42. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785.

    Google Scholar 

  43. von Boehmer, H. 2007. Oral tolerance: is it all retinoic acid? J Exp Med 204:1737–1739.

    Google Scholar 

  44. Mempel, T.R., M.J. Pittet, K. Khazaie, W. Weninger, R. Weissleder, H. von Boehmer, and U.H. von Andrian. 2006. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25:129–141.

    Article  PubMed  CAS  Google Scholar 

  45. Fisson, S., G. Darrasse-Jeze, E. Litvinova, F. Septier, D. Klatzmann, R. Liblau, and B.L. Salomon. 2003. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 198:737–746.

    Article  PubMed  CAS  Google Scholar 

  46. Lahl, K., C. Loddenkemper, C. Drouin, J. Freyer, J. Arnason, G. Eberl, A. Hamann, H. Wagner, J. Huehn, and T. Sparwasser. 2007. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63.

    Article  PubMed  CAS  Google Scholar 

  47. Kim, J.M., J.P. Rasmussen, and A.Y. Rudensky. 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald von Boehmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kretschmer, K., Apostolou, I., Verginis, P., von Boehmer, H. (2008). FoxP3 and Regulatory T Cells. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_2

Download citation

Publish with us

Policies and ethics