Skip to main content

Transposon Resources for Forward and Reverse Genetics in Maize

  • Chapter

The maize geneticists toolkit includes an impressive set of strategies for creating mutations that facilitate identifying genes based on phenotypes (forward genetics) and/or assigning phenotypes to genes identified by sequence (reverse genetics). Key to both forward and reverse genetics strategies are methods for construction and efficient molecular analysis of large, mutagenized maize populations that ideally contain mutations in all genes. Hence, as the technologies for high-throughput phenotype analysis of maize populations advance apace with DNA sequencing and genotyping technologies, the conventional distinction between forward and reverse genetics is likely to blur. Strategies for comprehensive mutagenesis of maize genes include TILLING (Till et al., 2004); RNAi (McGinnis et al., 2007); and transposon insertional mutagenesis, the focus of this chapter. These three approaches have complementary strengths and weaknesses with differences in relative cost per gene, precision, genetic background limitations, scalability, accessibility and relative coverage of the maize genome. While insertional mutagenesis is the most venerable of these technologies, resources based on mutations caused by defined DNA insertions are likely to have an enduring importance in functional genomics for several practical reasons: 1) compared to other types of mutations (e.g. point mutations) insertions are relatively easy to identify and map in the genome using conventional or high-throughput sequencing technologies, 2) large insertions are highly effective in causing significant disruptions of gene function (e.g. null mutations), and 3) the resulting loss-of-function mutations are genetically stable and typically recessive. Recessive, loss of function mutations are an important reference point for functional analysis of a gene.

Various DNA elements including random T-DNA insertions introduced by transformation (Alonso et al., 2003), engineered transposons (Muskett et al., 2003; Kolesnik et al., 2004; Raizada et al., 2003), as well as native transposons (Yamazaki et al., 2001) have been employed for large scale insertional mutagenesis of plant genomes. For maize, transposon-based resources are currently favored for several reasons: 1) the relative inefficiency of methods for transformation of maize limits production of large numbers of T-DNA lines; 2) maize is a pre-eminent model for transposon genetics with multiple genetically well-characterized transposon families; and 3) because maize is more easily out-crossed than self-pollinating species such as Arabidopsis and rice, plant populations containing large numbers of independent transpositions are comparatively easy to construct. The so-called “cut and paste” DNA transposons that have been the most favored for genomic resource development in maize include the Ac/Ds (Cowperthwaite et al., 2002; Kolkman et al., 2005) and Robertson's Mutator (Bensen et al., 1995, May et al., 2003; McCarty et al., 2005) systems. Each of these systems has well-characterized mechanisms enabling genetic control of transposon mobility in the genome. These transposon systems differ in properties that affect their suitability for functional genomics applications including: 1) copy number of active elements in the genome, 2) relative bias for insertion into gene sequences, and 3) propensity for transposition to linked sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleman, M. and M. Freeling (1986) TheMutransposable elements of maize: evidence for transposition and copy number regulation during development.Genetics112: 107–19.

    PubMed  CAS  Google Scholar 

  • Alonso, J. M., A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen, P. Shinn, D. K. Stevenson, J. Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller, A. Jeske, E. Koesema, C. C. Meyers, H. Parker, L. Prednis, Y. Ansari, N. Choy, H. Deen, M. Geralt, N. Hazari, E. Hom, M. Karnes, C. Mulholland, R. Ndubaku, I. Schmidt, P. Guzman, L. Aguilar-Henonin, M. Schmid, D. Weigel, D. E. Carter, T. Marchand, E. Risseeuw, D. Brogden, A. Zeko, W. L. Crosby, C. C. Berry and J. R. Ecker (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana.Science301:653–7.

    Article  PubMed  Google Scholar 

  • Bai, L., M. Singh, L. Pitt, M. Sweeney and T. P. Brutnell (2007) Generating novel allelic variation throughActivatorinsertional mutagenesis in maize.Genetics175:981–92.

    Article  PubMed  CAS  Google Scholar 

  • Barkan, A. and R. A. Martienssen (1991) Inactivation of maize transposon-Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end ofMu1.Proc Natl Acad Sci, USA88:3502–3506.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev and K. Zhao (2007) High-resolution profiling of histone methylations in the human genome.Cell129:823–37.

    Article  PubMed  CAS  Google Scholar 

  • Benito, M. I. and V. Walbot (1994) The terminal, inverted repeat sequences ofMuDRare functionally active promoters in maize cells.Maydica39:255–264.

    Google Scholar 

  • Bennetzen, J. L. (1996) TheMutatortransposable element system of maize.Curr Top Microbiol Immunol20:195–229.

    Google Scholar 

  • Bensen, R. J., G. S. Johal, V. C. Crane, J. T. Tossberg, P. S. Schnable, R. B. Meeley and S. P. Briggs (1995) Cloning and characterization of the maize An1 gene.Plant Cell7:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Brutnell, T.P. and L. J. Conrad (2003) Transposon tagging using Activator (Ac) in maize.Methods Mol Biol23:157–76.

    Google Scholar 

  • Chandler, V. L. and K. J. Hardeman (1992) TheMuelements of Zea mays.Adv Genet3:77–122.

    Article  Google Scholar 

  • Chomet, P.S. (1994) Transposon tagging withMutator. InThe Maize Handbook(Freeling, M. and Walbot, V., eds). New York: Springer Verlag, pp. 243–249.

    Google Scholar 

  • Chuck, G., R. Meeley and S. Hake (1998) The control of maize spikelet meristem fate by the APETALA2-like geneindeterminate spikelet 1. Genes Dev12:1145–1154.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, L. J. and T. P. Brutnell (2005) Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize.Genetics171:1999–2012.

    Article  PubMed  CAS  Google Scholar 

  • Cowperthwaite, M., W. Park, Z. Xu, X. Yan, S. C. Maurais and H. K. Dooner (2002) Use of the transposon Ac as a gene-searching engine in the maize genome.Plant Cell14:713–26.

    Article  PubMed  CAS  Google Scholar 

  • Cresse, A. D., S. H. Hulbert, W. E. Brown, J. R. Lucas and J. L. Bennetzen (1995)Mu1-related transposable elements of maize preferentially insert into low copy number DNA.Genetics140: 315–24.

    PubMed  CAS  Google Scholar 

  • Das, L. and R. A. Martienssen (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize.Plant Cell7: 287–94.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, C. R., F. Cui, M. L. Packila, J. Li, D. A. Ashlock, B. J. Nikolau and P. S. Schnable (2002) MaizeMutransposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flankingMutarget-site duplications exhibit nonrandom nucleotide composition throughout the genome.Genetics160: 697–716.

    PubMed  CAS  Google Scholar 

  • Emrich, S. J., L. Li, T. J. Wen, M. D. Yandeau-Nelson, Y. Fu, L. Guo, H. H. Chou, S. Aluru, D. A. Ashlock and P. S. Schnable (2007) Nearly identical paralogs: implications for maize (Zea maysL.) genome evolution.Genetics175:429–39.

    Article  PubMed  CAS  Google Scholar 

  • Emrich, S. J., S. Aluru, Y. Fu, T. J. Wen, M. Narayanan, L. Guo, D. A. Ashlock and P. S. Schnable (2004) A strategy for assembling the maize (Zea mays L.) genome.Bioinformatics20:140–7.

    Article  PubMed  CAS  Google Scholar 

  • Eveland, A. L., D. R. McCarty and K. E. Koch (2008) Transcript Profiling by 3′UTR Sequencing Resolves Expression of Gene Families.Plant Physiol146:32–44.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, J., Q. Dong, B. Schneider, D. J. Morrow, G. L. Nan, V. Brendel and V. Walbot (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons.Genome Biol5: R82.

    Article  PubMed  Google Scholar 

  • Frey, M., C. Stettner and A. Gierl (1998) A general method for gene isolation in tagging approaches: Amplification of insertion mutagenised sites (AIMS).Plant J13:717–721.

    Article  CAS  Google Scholar 

  • Fu, S., R. Meeley and M. J. Scanlon (2002)Empty pericarp 2encodes a negative regulator of the heat shock response and is required for maize embryogenesis.Plant Cell14:3119–32.

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti, A., Q. Zhao, J. Kyozuka, R. B. Meeley, M. K. Ritter, J. F. Doebley, M. E. Pè and R. J. Schmidt (2004) The role of barren stalk1 in the architecture of maize.Nature432:630–5.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B. S. and J. F. Doebley (1997) DNA sequence evidence for the segmental allotetraploid origin of maize.Proc Natl Acad Sci, USA94: 6809–6814

    Article  PubMed  CAS  Google Scholar 

  • Gray, J., P. Close, S. Briggs and G. Johal (1997) A novel suppressor of cell death in plants encoded by theLls1gene of maize.Cell89:25–31

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya, I. N., O. Hamant, L. Timofejeva, C. J. Wang, D. Braun, R. Meeley and W. Z. Cande (2006) Alleles ofafd1dissect REC8 functions during meiotic prophase I.J Cell Sci119:3306–15.

    Article  PubMed  CAS  Google Scholar 

  • Hanley, S., D. Edwards, D. Stevenson, S. Haines, M. Hegarty, W. Schuch and K. J. Edwards (2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays.Plant J23:557–66.

    Article  PubMed  CAS  Google Scholar 

  • Hershberger, R. J., C. A. Warren and V. Walbot (1991)Mutatoractivity in maize correlates with the presence and expression of theMutransposable elementMu9. ProcNatl Acad Sci USA88:10198–202.

    Article  PubMed  CAS  Google Scholar 

  • Holding, D. R., M. S. Otegui, B. Li, R. B. Meeley, T. Dam, B. G. Hunter, R. Jung and B. A. Larkins (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation.Plant Cell19:2569–82.

    Article  PubMed  CAS  Google Scholar 

  • Kent, W. J. (2002) BLAT—the BLAST-like alignment tool.Genome Res12:656–64.

    PubMed  CAS  Google Scholar 

  • Kolesnik, T., I. Szeverenyi, D. Bachmann, C. S. Kumar, S. Jiang, R. Ramamoorthy, M. Cai, Z. G. Ma, V. Sundaresan and S. Ramachandran (2004) Establishing an efficientAc/Dstagging system in rice: large-scale analysis of Ds flanking sequences.Plant J37:301–14.

    PubMed  CAS  Google Scholar 

  • Kolkman, J. M., L. J. Conrad, P. R. Farmer, K. Hardeman, K. R. Ahern, P. E. Lewis, R. J. Sawers, S.Lebejko, P. Chomet and T. P. Brutnell (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169: 981–95.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., L. C. Harper, I. Golubovskaya, C. R. Wang, D. Weber, R. B. Meeley, J. McElver, B. Bowen, W. Z. Cande and P. S. Schnable (2007) Functional analysis of maize RAD51 in meiosis and double-strand break repair.Genetics176:1469–82.

    Article  PubMed  CAS  Google Scholar 

  • Lid, S. E., D. Gruis, R. Jung, J. A. Lorentzen, E. Ananiev, M. Chamberlin, X. Niu, R. Meeley, S. Nichols and O. A. Olsen (2002) Thedefective kernel 1(dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily.Proc Natl Acad Sci USA99:5460–5.

    Article  PubMed  CAS  Google Scholar 

  • Lisch, D., P. Chomet and M. Freeling (1995) Genetic characterization of theMutatorsystem in maize: behavior and regulation ofMutransposons in a minimal line.Genetics139:1777–96.

    PubMed  CAS  Google Scholar 

  • Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fi-erro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley and J. M. Rothberg (2005) Genome sequencing in microfabricated high-density picolitre reactors.Nature437:376–80.

    PubMed  CAS  Google Scholar 

  • Martienssen, R. A. and A. Baron (1994) Coordinate suppression of mutations caused byRobertson's mutatortransposons in maize.Genetics. 136:1157–70.

    PubMed  CAS  Google Scholar 

  • May, B. P., H. Liu, E. Vollbrecht, L. Senior, P. D. Rabinowicz, D. Roh, X. Pan, L. Stein, M. Freeling, D. Alexander and R. A. Martienssen (2003) Maize-targeted mutagenesis: A knockout resource for maize.Proc Natl Acad Sci USA100:11541–6.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, D. R., A. M. Settles, M. Suzuki, B. C. Tan, S. Latshaw, T. Porch, K. Robin, J. Baier, W. Avigne, J. Lai, J. Messing, K. E. Koch and L. C. Hannah (2005) Steady-state transposon mutagenesis in inbred maize.Plant J44: 52–61.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, K., N. Murphy, A. R. Carlson, A. Akula, C. Akula, H. Basinger, M. Carlson, P. Hermanson, N. Kovacevic, M. A. McGill, V. Seshadri, J. Yoyokie, K. Cone, H. F. Kaeppler, S. M. Kaeppler and N. M. Springer (2007) Assessing the efficiency of RNA interference for maize functional genomics.Plant Physiol143:1441–51.

    Article  PubMed  CAS  Google Scholar 

  • Meeley, R. and S. Briggs (1995) Reverse genetics for maize.Maize Genetics News Letter69:67–82

    Google Scholar 

  • Mena, M., B. Ambrose, R. Meeley, S. Briggs, M. F. Yanofsky and R. J. Schmidt (1996) Diversification of C-function activity in maize flower development.Science274:1537–1540.

    Article  PubMed  CAS  Google Scholar 

  • Muskett, P. R., L. Clissold, A. Marocco, P. S. Springer, R. Martienssen and C. Dean (2003) A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome.Plant Physiol132, 506–16.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. E., P. D. Rabinowicz, A. L. O'Shaughnessy, V. S. Balija, L. U. Nascimento, S. Dike, M. de la Bastide, R. A. Martienssen and W. R. McCombie (2003) Maize genome sequencing by methylation filtration.Science302: 2115–7.

    Article  PubMed  Google Scholar 

  • Park, W. J., V. Kriechbaumer, A. Möller, M. Piotrowski, R. B. Meeley, A. Gierl and E. Glawischnig (2003) The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.Plant Physiol133:794–802.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P., I. N. Golubovskaya, L. Timofejeva, R. B. Meeley, W. F. Sheridan and W. Z.Cande (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1.Science303:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Porch, T. G., C. W. Tseung, E. A. Schmelz and A. M. Settles (2006) The maizeViviparous10/ Viviparous13locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis.Plant J45: 250–63.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz, P. D., K. Schutz, N. Dedhia, C. Yordan, L. D. Parnell, L. Stein, W. R. McCombie and R. A. Martienssen (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome.Nat Genet23:305–8.

    Article  PubMed  CAS  Google Scholar 

  • Raizada, M.N. (2003) RescueMu protocols for maize functional genomics.Methods Mol Biol23: 37–58.

    Google Scholar 

  • Robertson, D. S. (1978) Characterization of a mutator system in maize.Mutat. Res51: 21–28.

    Google Scholar 

  • Robertson, D. S. (1980) The Timing ofMuActivity in Maize.Genetics94:969–978.

    PubMed  Google Scholar 

  • Rudenko, G. and V. Walbot (2001) Expression and post-transcriptional regulation of maize transposable elementMuDRand its derivatives.Plant Cell13:553–570.

    Article  PubMed  CAS  Google Scholar 

  • Settles, A. M., S. Latshaw and D. R. McCarty (2004) Molecular analysis of high-copy insertion sites in maize.Nucleic Acids Res32: e54.

    Article  PubMed  Google Scholar 

  • Settles, A. M., D. R. Holding, B. C. Tan, S. P. Latshaw, J. Liu, M. Suzuki, L. Li, B. A. O'Brien, D. S. Fajardo, E. Wroclawska, C. W. Tseung, J. Lai, Hunter CT, W. T. Avigne, J. Baier, J. Messing, L. C. Hannah, K. E. Koch, P. W. Becraft, B. A. Larkins and D. R. McCarty (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.BMC Genomics8:116.

    Article  PubMed  Google Scholar 

  • Schuler, G. D., S. F. Altschul and D. J. Lipman (1991) A workbench for multiple alignment construction and analysis.Proteins9:180–90.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, R. K., M. Freeling and D. Lisch (2003)Mukiller causes the heritable inactivation of theMutatorfamily of transposable elements in Zea mays.Genetics165:781–97.

    PubMed  CAS  Google Scholar 

  • Suzuki, M., A. Mark Settles, C. W. Tseung, Q. B. Li, S. Latshaw, S. Wu, T. G. Porch, E. A. Schmelz, M. G. James and D. R. McCarty (2006) The maizeviviparous15locus encodes the molybdopterin synthase small subunit.Plant J45: 264–74.

    Article  PubMed  CAS  Google Scholar 

  • Till, B. J., S. H. Reynolds, C. Weil, N. Springer, C. Burtner, K. Young, E. Bowers, C. A. Codomo, L. C. Enns, A. R. Odden, E. A. Greene, L. Comai and S. Henikoff (2004) Discovery of induced point mutations in maize genes by TILLING.BMC Plant Biol4:12.

    Article  PubMed  Google Scholar 

  • Walbot, V. (2000) Saturation mutagenesis using maize transposons.Curr Opin Plant Biol3:103–7.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, M., H. Tsugawa, A. Miyao, M. Yano, J. Wu, S. Yamamoto, T. Ma-tsumoto, T. Sasaki and H. Hirochika (2001) The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets.Mol Genet Genomics265:336–44.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Y., P. J. SanMiguel and J. L. Bennetzen (2003) High-Cot sequence analysis of the maize genome.Plant J34:249–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

McCarty, D.R., Meeley, R.B. (2009). Transposon Resources for Forward and Reverse Genetics in Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_28

Download citation

Publish with us

Policies and ethics