Skip to main content

Imprinting in Maize

  • Chapter
Handbook of Maize

Genomic imprinting in the maize endosperm results in differential expression of maternal and paternal alleles depending on their parental origin. The availability of sequence polymorphisms between different maize inbred lines and the large persistent endosperm of maize collectively provide a unique platform for studying the occurrence and mechanisms of imprinting in plants. Several imprinted genes have been identified in maize by targeted analyses. Genomic screens of allele-specific expression patterns in endosperm tissue have identified additional candidates for imprinting. Imprinted expression in maize is often associated with allele-specific DNA methylation states and it is likely that chromatin modifications are also involved in the establishment and maintenance of imprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H.G., and R.J. Scott (2000) Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127: 2493–2502.

    PubMed  CAS  Google Scholar 

  • Alleman, M., and J. Doctor (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43: 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Baroux, C., Pecinka, A., Fuchs, J., Schubert, I., and U. Grossniklaus (2007) The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19: 1782–1794.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, M.W., and A. Viotti (1988) DNA methylation and tissue-specific transcription of the storage protein gene of maize. Plant Mol. Biol. 11: 203–214.

    Article  CAS  Google Scholar 

  • Brink, R.A., Kermicle, J.L., and N.K. Ziebur (1970) Derepression in the Female Gametophyte in Relation to Paramutant R Expression in Maize Endosperms, Embryos, and Seedlings. Genetics 66: 87–96.

    PubMed  Google Scholar 

  • Chaudhuri, S., and J. Messing (1994) Allele-specific parental imprinting of dzr1, a posttranscrip-tional regulator of zein accumulation. Proc Natl Acad Sci U S A 91: 4867–4871.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and R.L. Fischer (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110: 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya, O.N., Hermon, P., Hantke, S., Muszynski, M.G., Kollipara, K., and E.V. Ananiev (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15: 425–438.

    Article  PubMed  CAS  Google Scholar 

  • Di Fonzo, N., Fornasari, E., Salamini, F., Reggiani, R., and C. Soave (1980) Interaction of maize mutants floury-2 and opaque-7 with opaque-2 in the synthesis of endosperm proteins. J. Hered. 71: 397–402.

    CAS  Google Scholar 

  • Dilkes, B.P., and L. Comai (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16: 3174–3180.

    Article  PubMed  Google Scholar 

  • Gavazzi, G., Dolfini, S., Allegra, D., Castiglioni, P., Todesco, G., and M. Hoxha (1997) Dap (Defective aleurone pigmentation) mutations affect maize aleurone development. Mol Gen Genet 256: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, M., Choi, Y., and R.L. Fischer (2004) Imprinting and seed development. Plant Cell 16Suppl: S203–213.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, M., Huh, J.H., Hsieh, T.F., Penterman, J., Choi, Y., Harada, J.J., Goldberg, R.B., and R.L.Fischer (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124: 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Grimanelli, D., Perotti, E., Ramirez, J., and O. Leblanc (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17: 1061–1072.

    Article  PubMed  CAS  Google Scholar 

  • Guitton, A.E., and F. Berger (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49: 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X., and Z. Hu (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36: 30–44.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos, J.F., Pennington, P.D., Costa, L.M., and H.G. Dickinson (2003) Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos Trans R Soc Lond B Biol Sci 358: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos, J.F., Costa, L.M., Dal Pra, M., Scholten, S., Kranz, E., Perez, P., and H.G. Dickinson (2006) Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 38: 876–878.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos, J.F., Costa, L.M., Biderre-Petit, C., Khbaya, B., O'Sullivan, D.M., Wormald,M., Perez, P., and H.G. Dickinson (2004) maternally expressed gene1 Is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16: 1288–1301.

    Article  PubMed  CAS  Google Scholar 

  • Haig, D., and M. Westoby (1989) Parent specific gene expression and the triploid endosperm. Am.Nat. 134: 147–155.

    Article  Google Scholar 

  • Haun, W.J., Laoueille-Duprat, S., O'Connell M, J., Spillane, C., Grossniklaus, U., Phillips, A.R.,Kaeppler, S.M., and N.M. Springer (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 49: 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Hermon, P., Srilunchang, K.O., Zou, J., Dresselhaus, T., and O.N. Danilevskaya (2007) Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Mol Biol 64: 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Howell, C.Y., Bestor, T.H., Ding, F., Latham, K.E., Mertineit, C., Trasler, J.M., and J.R. Chaillet (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104: 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Jeddeloh, J.A., Stokes, T.L., and E.J. Richards (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22: 94–97.

    Article  PubMed  CAS  Google Scholar 

  • Jullien, P.E., Katz, A., Oliva, M., Ohad, N., and F. Berger (2006) Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16: 486–492.

    Article  PubMed  CAS  Google Scholar 

  • Kermicle, J.L. (1970) Dependence of the R-Mottled Aleurone Phenotype in Maize on Mode of Sexual Transmission. Genetics 66: 69–85.

    PubMed  Google Scholar 

  • Kermicle, J.L. (1978) Imprinting of gene action in maize endosperm. In: Maize breeding and Genetics (D.B. Walden, ed.) Wiley, New York, pp. 357–371.

    Google Scholar 

  • Kermicle, J.L., and M. Alleman (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl, 9–14.

    Google Scholar 

  • Kinoshita, T., Miura, A., Choi, Y., Kinoshita, Y., Cao, X., Jacobsen, S.E., Fischer, R.L., and T.Kakutani (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303: 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., and G. Makarevich (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7: 1223–1227.

    Article  PubMed  Google Scholar 

  • Kohler, C., Page, D.R., Gagliardini, V., and U. Grossniklaus (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37: 28–30.

    PubMed  Google Scholar 

  • Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., and U. Grossniklaus (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17: 1540–1553.

    Article  PubMed  Google Scholar 

  • Lauria, M., Rupe, M., Guo, M., Kranz, E., Pirona, R., Viotti, A., and G. Lund (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16: 510–522.

    Article  PubMed  CAS  Google Scholar 

  • Lund, G., Messing, J., and A. Viotti (1995a) Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol Gen Genet 246: 716–722.

    Article  CAS  Google Scholar 

  • Lund, G., Ciceri, P., and A. Viotti (1995b) Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J 8: 571–581.

    Article  CAS  Google Scholar 

  • McGinnis, K., Murphy, N., Carlson, A.R., Akula, A., Akula, C., Basinger, H., Carlson, M.,Hermanson, P., Kovacevic, N., McGill, M.A., Seshadri, V., Yoyokie, J., Cone, K., Kaeppler,H.F., Kaeppler, S.M., and N.M. Springer (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143: 1441–1451.

    Article  PubMed  CAS  Google Scholar 

  • Messing, J., and H.K. Dooner (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9: 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D. (1965) Regulation of gene action in maize. In: Genetics Today (S.V. Geerst, ed.)Oxford, Pergamon, pp. 131–135.

    Google Scholar 

  • Selinger, D.A., and V.L. Chandler (2001) B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiol 125M: 1363–1379.

    Article  Google Scholar 

  • Song, R., and J. Messing (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100: 9055–9060.

    Article  PubMed  CAS  Google Scholar 

  • Spillane, C., Schmid, K.J., Laoueille-Duprat, S., Pien, S., Escobar-Restrepo, J.M., Baroux, C.,Gagliardini, V., Page, D.R., Wolfe, K.H., and U. Grossniklaus (2007) Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448: 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Springer, N.M., Danilevskaya, O.N., Hermon, P., Helentjaris, T.G., Phillips, R.L., Kaeppler, H.F., and S.M. Kaeppler (2002) Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiol 128: 1332–1345.

    Article  PubMed  CAS  Google Scholar 

  • Stupar, R.M., Hermanson, P.J., and N.M. Springer (2007) Non-additive Expression and Parent-of-origin Effects Identified by Microarray and Allele-specific Expression Profiling of Maize Endosperm. Plant Physiol. PMID: 17766400

    Google Scholar 

  • Vielle-Calzada, J.P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M.A., and U. Grossniklaus (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13: 2971–2982.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., and M. Paulsen (2003) The potential role of gene duplications in the evolution of imprinting mechanisms. Hum Mol Genet 12: R215–220.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, W., Brown, R.C., Lemmon, B.E., Harada, J.J., Goldberg, R.B., and R.L. Fischer (2006) Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol 142: 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, W., Gehring, M., Choi, Y., Margossian, L., Pu, H., Harada, J.J., Goldberg, R.B., Pennell,R.I., and R.L. Fischer (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5: 891–901.

    Article  PubMed  CAS  Google Scholar 

  • Yadegari, R., Kinoshita, T., Lotan, O., Cohen, G., Katz, A., Choi, Y., Nakashima, K., Harada, J.J.,Goldberg, R.B., Fischer, R.L., and N. Ohad (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12: 2367–2382.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., and G. Grafi (2000) The high mobility group I/Y protein is hypophosphorylated in endoreduplicating maize endosperm cells and is involved in alleviating histone H1-mediated transcriptional repression. J Biol Chem 275: 27494–27499.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose F. Gutierrez-Marcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Springer, N.M., Gutierrez-Marcos, J.F. (2009). Imprinting in Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_21

Download citation

Publish with us

Policies and ethics