Skip to main content

Vehicle Routing Problems and Container Terminal Operations – An Update of Research

  • Chapter

Part of the Operations Research/Computer Science Interfaces book series (ORCS,volume 43)

Summary

Containers came into the market for international conveyance of sea freight almost five decades ago. The breakthrough was achieved with large investments in specially designed ships, adapted seaport terminals with suitable equipment, and availability of containers. Today over 60 % of the world’s deep-sea general cargo is transported in containers and some routes are even containerized up to 100 %. Seaport container terminals face a high demand for advanced optimization methods. A crucial competitive advantage is the rapid turnover of the containers, which corresponds to an efficient handling of containers as well as to a decrease of the costs of the transshipment processes. One of the key concerns in this respect refers to various types of equipment at container terminals devoted to the routing of containers to achieve high productivity. For instance, a variety of vehicles is used for the horizontal transport at the quayside and at the landside.

In this chapter we provide a comprehensive survey on routing problems that have arisen in the container terminal domain, such as how to route automated guided vehicles, new technologies such as double rail mounted gantry cranes, etc. This opens up new challenges for the field. The chapter strives to summarize the research results for the vehicle routing problem and its variants regarding container terminals.

Key words

  • Vehicle routing problem
  • container terminal operations
  • scheduling
  • automated guided vehicles
  • straddle carriers
  • rail mounted gantry cranes
  • quay cranes
  • trucks
  • trailers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77778-8_25
  • Chapter length: 39 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-77778-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. The container terminal of the future, 2006. http://www.tudelft.nl/live/pagina.jsp?id=412f9f1f-8578-4b91-8760-f5a41aa5fa0c&lang=en– last check of URL: Jan 15, 2007.

    Google Scholar 

  2. Anonymous. The floating container crane concept, 2006. http://www.cranestodaymagazine.com/story.asp?sectionCode=66&storyCode=2040221 – last check of URL: Jan 15, 2007.

    Google Scholar 

  3. A. Asef-Vaziri and B. Khoshnevis. Automated technologies in maritime container terminals, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/Ase-Vaziri.pdf–last check ofURL: April 19, 2007.

    Google Scholar 

  4. J.W. Bae and K.H. Kim. A pooled dispatching strategy for automated guided vehicles in port container terminals.International Journal of Management Science, 6:47–67, 2000.

    Google Scholar 

  5. F. Baita, R. Pesenti, W. Ukovich, and D. Favaretto. A comparison of different solution approaches to the vehicle scheduling problem in a practical case.Computers & Operations Research, 27:1249–1269, 2000.

    CrossRef  Google Scholar 

  6. M. Ball and M. Magazine. Sequencing of insertions in printed circuit board assembly.Operations Research, 36:192–201, 1988.

    Google Scholar 

  7. R.W. Bent and P. van Hentenryck. Scenario-based planning for partially dynamic vehicle routing with stochastic customers.Operations Research, 52:977–987, 2004.

    CrossRef  Google Scholar 

  8. E.K. Bish. A multiple-crane-constrained scheduling problem in a containerterminal.European Journal of Operational Research, 144:83–107, 2003.

    Google Scholar 

  9. E.K. Bish, F.Y. Chen, Y.T. Leong, B.L. Nelson, J.W.C. Ng, and D.Simchi-Levi. Dispatching vehicles in a mega container terminal.OR Spectrum, 27:491–506, 2005.

    CrossRef  Google Scholar 

  10. E.K. Bish, T.-Y. Leong, C.-L. Li, J.W.C. Ng, and D. Simchi-Levi. Analysis of a new vehicle scheduling and location problem.Naval Research Logistics, 48:363–385, 2001.

    CrossRef  Google Scholar 

  11. L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of vehicles and crews : the state of the art.Computers & Operations Research, 10:63–211, 1983.

    CrossRef  Google Scholar 

  12. J. BÖse, T. Reiners, D. Steenken, and S. Voβ. Vehicle dispatching at seaport container terminals using evolutionary algorithms.In R.H. Sprague, ed.,Proc. of the 33rd Annual Hawaii Intern.Conf. on System Sciences (HICSS), vol 2. IEEE Computer Society, LosAlamitos, CA, USA, 2000.

    Google Scholar 

  13. O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part I: route construction and local search algorithms.Transportation Science, 39:104–118, 2005.

    CrossRef  Google Scholar 

  14. O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part II: metaheuristics.Transportation Science, 39:119–139, 2005.

    CrossRef  Google Scholar 

  15. D. Briskorn, A. Drexl, and S. Hartmann. Inventory-based dispatching of automated guided vehicles on containerterminals.OR Spectrum, 28:611–630, 2006.

    CrossRef  Google Scholar 

  16. D. Briskorn and S. Hartmann. Simulating dispatching strategies for automated container terminals.InOperations Research Proceedings 2005, 97–102. Springer,Berlin, 2006.

    CrossRef  Google Scholar 

  17. G.G. Brown, K.J. Cormican, S. Lawphongpanich, and D.B. Widdis. Optimizing submarine berthing with a persistence incentive.Naval Research Logistics, 44:301–318, 1997.

    CrossRef  Google Scholar 

  18. A. Bruzzone and R. Signorile. Simulation and genetic algorithms for ship planning and shipyard layout.Simulation, 71:74–83, 1998.

    CrossRef  Google Scholar 

  19. H. Chang, H. Jula, A. Chassiakos, and P. Ioannou. Empty container reuse in the los angeles/long beach port area, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach,CA,USA. http://www.metrans.org/nuf/documents/Jula.pdf–last check of URL:April 19, 2007.

    Google Scholar 

  20. I.M. Chao. A tabu search method for the truck and trailer routing problem.Computers & Operations Research, 29:33–51, 2002.

    CrossRef  Google Scholar 

  21. L. Chen, N. Bostel, P. Dejax, J. Cai, and L. Xi. A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal.European Journal of Operational Research, 181:40–58, 2007.

    CrossRef  Google Scholar 

  22. S.T. Choong, M.H. Cole, and E. Kutanoglu. Empty container management for intermodal transportation networks.Transportation Research-E, 38:423–438, 2002.

    CrossRef  Google Scholar 

  23. M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen.Maritime transportation. In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, 189–284. Elsevier,Amsterdam, 2007.

    Google Scholar 

  24. M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and perspectives.Transportation Science, 38:1–18, 2004.

    CrossRef  Google Scholar 

  25. M. Christiansen and B. Nygreen.Robust inventory ship routing by column generation.In G. Desaulniers, J. Desrosiers, and M.M. Solomon, eds.,Column Generation, 197–224. Springer (US), 2005.

    CrossRef  Google Scholar 

  26. N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem.In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, eds.,Combinatorial optimization, 315–338. Wiley, Chichester, UK, 1979.

    Google Scholar 

  27. J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and tabu search heuristics for the berth-allocation problem.Transportation Science, 39:526–538, 2005.

    CrossRef  Google Scholar 

  28. J.-F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo.Vehicle routing.In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, vol 14, 367–428. Elsevier, Amsterdam, 2007.

    Google Scholar 

  29. L. Coslovich, R. Pesenti, and W. Ukovich. Minimizing fleet operating costs for a container transportation company.European Journal of Operational Research, 171:776–786, 2006.

    CrossRef  Google Scholar 

  30. T.G. Crainic and K.H. Kim. Intermodal transportation.In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, 467–537. Elsevier, Amsterdam, 2007.

    Google Scholar 

  31. S.K. Das and L.N. Spasovic.Scheduling material handling vehicles in a container terminal.Production Planning & Control, 14:623–633, 2003.

    CrossRef  Google Scholar 

  32. M. Desrochers, J.K. Lenstra, and M.W.P. Savelsbergh. A classification scheme for vehicle routing and scheduling problems.European Journal of Operational Research, 46:322–332, 1990.

    CrossRef  Google Scholar 

  33. B. Dimitrijevic and L.N. Spasovic.Innovative transportation technologies–an alternative for providing linkages between port terminals and inland freight distribution facilities, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/Dimitrijevic.pdf–last check of URL: April 19, 2007.

    Google Scholar 

  34. M. Dror, ed.Arc Routing.Kluwer, Boston, 2000.

    Google Scholar 

  35. M.B. Duinkerken, R. Dekker, S.T. Kurstjens, J.A. Ottjes, and N.P. Dellaert. Comparing transportation systems for inter-terminal transport at theMaasvlakte container terminals.OR Spectrum, 28:469–493, 2006.

    CrossRef  Google Scholar 

  36. M.B. Duinkerken, J.A. Ottjes, and G. Lodewijks.Comparison of routing strategies for AGV systems using simulation.In L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol, and R.M. Fujimoto, eds.,Proc. of the 2006 Winter Simulation Conf. (WSC 2006), Monterey, CA, USA, Dec 03–06, 1523–1530. ACM, 2006.

    Google Scholar 

  37. R. Eisenberg, R. Stahlbock, S. Voβ, and D. Steenken. Sequencing and scheduling of movements in an automated container yard using double rail-mounted gantry cranes.Working paper, University of Hamburg, 2003.

    Google Scholar 

  38. K. Fagerholt and M. Christiansen. A travelling salesman problem with allocation, time window and precedence constraints–an application to ship scheduling.International Transactions in Operational Research, 7:231–244,2000.

    CrossRef  Google Scholar 

  39. T. Franz, S. Voβ, and H. RÖlke. Market-mechanisms for integrated container terminal management. In V. Bertram, ed.,Proc. of the 6th Intern. Conf. on Computer and IT Applications in the Maritime Industries, COMPIT’07, Cortona, Italy, April 23-25, 234–248. INSEAN, 2007.

    Google Scholar 

  40. L.M. Gambardella, A.E. Rizzoli, and M. Zaffalon. Simulation and planning of an intermodal container terminal.Simulation, 71:107–116, 1998.

    CrossRef  Google Scholar 

  41. J.C. Gerdessen. Vehicle routing problem with trailers.European Journal of Operational Research, 93:135–147, 1996.

    CrossRef  Google Scholar 

  42. M. Goetschalckx and H.D. Ratliff. Order picking in an aisle.IIE Transactions, 20:53–62, 1988.

    CrossRef  Google Scholar 

  43. A.V. Goodchild. Crane double cycling in container ports: Algorithms, evaluation, and planning, 2005. PhD thesis, University of California at Berkeley, Department of Civil and Environmental Engineering.

    Google Scholar 

  44. A.V. Goodchild. Crane double cycling in container ports: planning methods and evaluation, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/Goodchild.pdf–last check of URL: April 19, 2007.

    Google Scholar 

  45. A.V. Goodchild.Port planning for double cycling crane operations, 2006. Paper presented at the TRB 2006 Annual Meeting, Washington, D.C., Jan 22-26.

    Google Scholar 

  46. A.V. Goodchild and C.F. Daganzo.Reducing ship turn-around time using double cycling.Technical report, University of California, Berkeley, Institute of Transportation Studies. Research Report UCB-ITS-RR-2004-4 (May 1), 2004.

    Google Scholar 

  47. A.V. Goodchild and C.F. Daganzo.Crane double cycling in container ports: Effect on ship dwell time.Technical report, University of California, Berkeley, Institute of Transportation Studies. Research Report UCB-ITS-RR-2005-5 (July), 2005.

    Google Scholar 

  48. A.V. Goodchild and C.F. Daganzo. Double-cycling strategies for container ships and their effect onship loading and unloading operations.Transportation Science, 40:473–483, 2006.

    CrossRef  Google Scholar 

  49. M. Grunow, H.-O. Günther, and M. Lehmann. Dispatching multi-load AGVs in highly automated seaport container terminals.OR Spectrum, 26:211–235, 2004.

    CrossRef  Google Scholar 

  50. M. Grunow, H.-O. Günther, and M. Lehmann.Online- versus Offline-Einsatzplanung von Fahrerlosen Transportsystemen in Containerhäfen.In T. Spengler, S. Voβ, and H. Kopfer, eds.,Logistik Management, 399–410. Springer, Berlin, 2004.

    Google Scholar 

  51. M. Grunow, H.-O. Günther, and M. Lehmann. Strategies for dispatching AGVs at automated seaport container terminals.OR Spectrum, 28:587–610, 2006.

    CrossRef  Google Scholar 

  52. H. Gunnarsson, M. Rönnqvist, and D. Carlsson. A combined terminal location and ship routing problem.Journal of the Operational Research Society, 57:928–938, 2006.

    CrossRef  Google Scholar 

  53. H.-O. Günther and K.-H. Kim. Container terminals and terminal operations.OR Spectrum, 28:437–445, 2006.

    CrossRef  Google Scholar 

  54. G. Gutin and A.P. Punnen, eds.The Traveling Salesman Problem and Its Variations.Kluwer, Boston, 2002.

    Google Scholar 

  55. R.W. Hall. Distance approximations for routing manual pickers in a warehouse.IIE Transactions, 25:76–87, 1993.

    CrossRef  Google Scholar 

  56. I.A. Hansen. Automated shunting of rail container wagons in ports and terminalareas.Transportation Planning and Technology, 27:385–401, 2004.

    CrossRef  Google Scholar 

  57. R.F. Hartl, G. Hasle, and G.K. Janssens. Special issue on rich vehicle routing problem–editorial.Central European Journal of Operations Research, 14:103–104,2006.

    CrossRef  Google Scholar 

  58. S. Hartmann. Generating scenarios for simulation and optimization of container terminal logistics.OR Spectrum, 26:171–192, 2004.

    CrossRef  Google Scholar 

  59. G. Hasle.Heuristics for rich VRP models. Presentation at ROUTE2003, Skodsborg, Denmark, June 24, 2003. http://www1.ctt.dtu.dk/ROUTE2003/presentations/Geir%20Hasle.ppt–last check of URL: Jan 14, 2007.

    Google Scholar 

  60. L.E. Henesey.Enhancing Container Terminal Performance: A Multi Agent Systems Approach.Blekinge Institute of Technology, Karlshamn (Sweden), 2004.

    Google Scholar 

  61. Y.C. Ho and S.H. Chien. A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs.International Journal of Production Research, 44:4193–4222, 2006.

    CrossRef  Google Scholar 

  62. Y.-C. Ho and P.-F. Hsieh. A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles.International Journal of Production Research, 42:801–832, 2004.

    CrossRef  Google Scholar 

  63. L. Hoffarth and S. Voβ. Liegeplatzdisposition auf einem Containerterminal – Ansätzezur Entwicklung eines entscheidungsunterstützenden Systems.In H. Dyckhoff, U. Derigs, M. Salomon, and H. Tijms, eds.,Operations Research Proceedings 1993, 89–95. Springer, Berlin, 1994.

    Google Scholar 

  64. C.-I. Hsu and Y.-P. Hsieh. Routing, ship size, and sailing frequency decision-making for amaritime hub-and-spoke container network.Mathematical and Computer Modelling, 45:899–916, 2007.

    CrossRef  Google Scholar 

  65. hulten97L.A.R. Hulten.Container Logistics and its Management.PhD thesis, Chalmers University of Technology: Department of Transportation and Logistics, 1997.

    Google Scholar 

  66. A. Imai, E. Nishimura, and J. Current. A lagrangian relaxation-based heuristic for the vehicle routing with full container load.European Journal of Operational Research, 176:87–105, 2007.

    CrossRef  Google Scholar 

  67. A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou. Berth allocation at indented berths for mega-containerships.European Journal of Operational Research, 179:57–593, 2007.

    CrossRef  Google Scholar 

  68. A. Imai, E. Nishimura, and S. Papadimitriou.The dynamic berth allocation problem for a container port.Transportation Research-B, 35:401–417, 2001.

    CrossRef  Google Scholar 

  69. A. Imai, E. Nishimura, and S. Papadimitriou. Berth allocation with service priority.Transportation Research-B, 37:437–457, 2003.

    CrossRef  Google Scholar 

  70. A. Imai, E. Nishimura, and S. Papadimitriou. Corrigendum to ’the dynamic berth allocation problem for a container port’ [Transportation Research-B 35 (2001) 401–417].Transportation Research-B, 39:197, 2005.

    CrossRef  Google Scholar 

  71. A. Imai, E. Nishimura, and S. Papadimitriou.Berthing ships at a multi-user container terminal with a limited quay capacity.Transportation Research-E. In press, doi:10.1016/j.tre.2006.05.002, online 2006.

    Google Scholar 

  72. A. Imai, E. Nishimura, S. Papadimitriou, and M. Liu. The economic viability of container mega-ships.Transportation Research-E, 42:21–41, 2006.

    CrossRef  Google Scholar 

  73. P. Ioannou, A. Chassiakos, J. Zhang, A. Kanaris, and R. Unglaub. Automated container transport system between inland port and terminals. Project Report, University of Southern California, 2002. http://www.usc.edu/dept/ee/catt/2003/jianlong/02%20METRANS%20Final %20Report.pdf – last check of URL: Jan 08, 2007.

    Google Scholar 

  74. P.A. Ioannou, E.B. Kosmatopoulos, H. Jula, A. Collinge, C.-I. Liu, A. Asef-Vaziri, and E. Dougherty Jr. Cargo handling technologies. Final Report, University of Southern California, 2000. http://www.usc.edu/dept/ee/catt/2002/jula/Marine/FinalReport CCDoTT 97.pdf – last check of URL: Jan 08, 2007.

    Google Scholar 

  75. K.A. James and S. Gurol.Urban maglev freight container movement at the ports of Los Angeles/Long Beach, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/KenJames.pdf–last check of URL: April 19, 2007.

    Google Scholar 

  76. H. Jula, A. Chassiakos, and P. Ioannou. Port dynamic empty container reuse.Transportation Research-E, 42:43–60, 2006.

    CrossRef  Google Scholar 

  77. H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container movement by trucks in metropolitan networks: modeling and optimization.Transportation Research-E, 41:235–259, 2005.

    CrossRef  Google Scholar 

  78. K.H. Kim and J.W. Bae. A dispatching method for automated guided vehicles to minimize delay of containership operations.International Journal of Management Science, 5:1–25, 1999.

    Google Scholar 

  79. K.H. Kim and J.W. Bae. A look-ahead dispatching method for automated guided vehicles in automated port container terminals.Transportation Science, 38:224–234, 2004.

    CrossRef  Google Scholar 

  80. K.H. Kim, S.M. Jeon, and K.R. Ryu. Deadlock prevention for automated guided vehicles in automated container terminals.OR Spectrum, 28:659–679, 2006.

    CrossRef  Google Scholar 

  81. K.H. Kim and K.Y. Kim. An optimal routing algorithm for a transfer crane in port container terminals.Transportation Science, 33:17–33, 1999.

    CrossRef  Google Scholar 

  82. K.H. Kim and K.Y. Kim. Routing straddle carriers for the loading operation of containers using a beam search algorithm.Computers & Industrial Engineering, 36:106–136, 1999.

    CrossRef  Google Scholar 

  83. K.H. Kim and Y.-M. Park. A crane scheduling method for port container terminals.European Journal of Operational Research, 156:752–768, 2004.

    CrossRef  Google Scholar 

  84. K.H. Kim, S.J. Wang, Y.-M. Park, C.-H. Yang, and J.W. Bae. A simulation study on operation rules for automated container yards.InProc. of the 7th Annual Intern. Conf. on Industrial Engineering, Pusan, Korea, 250–253, 2002.

    Google Scholar 

  85. K.Y. Kim and K.H. Kim. A routing algorithm for a single transfer crane to load exportcontainers onto a containership.Computers & Industrial Engineering, 33:673–676, 1997.

    CrossRef  Google Scholar 

  86. K.Y. Kim and K.H. Kim. A routing algorithm for a single straddle carrier to load export containers onto a containership.International Journal of Production Economics, 59:425–433, 1999.

    CrossRef  Google Scholar 

  87. K.Y. Kim and K.H. Kim. Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals.Naval Research Logistics, 50:498–514, 2003.

    CrossRef  Google Scholar 

  88. P.-H. Koo, W.S. Lee, and D.W. Jang. Fleet sizing and vehicle routing for container transportation in a static environment.OR Spectrum, 26(2):193–209, 2004.

    CrossRef  Google Scholar 

  89. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds.The Traveling Salesman Problem–A Guided Tour of Combinatorial Optimization.Wiley, Chichester, 1985.

    Google Scholar 

  90. D.-H. Lee, Z. Cao, and Q. Meng. Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm.International Journal of Production Economics, 107:115–124,2007.

    CrossRef  Google Scholar 

  91. D.-H. Lee, H.Q. Wang, and L. Miao.Quay crane scheduling with non-interference constraints in portcontainer terminals.Transportation Research-E. In press,doi:10.1016/j.tre.2006.08.001, online 2006.

    Google Scholar 

  92. J. Lee and T. Srisawat. Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs.International Journal of Production Research, 44:653–673,2006.

    CrossRef  Google Scholar 

  93. M. Lehmann, M. Grunow, and H.-O. Günther. Deadlock handling for real-time control of AGVs at automated container terminals.OR Spectrum, 28:631–657, 2006.

    CrossRef  Google Scholar 

  94. B. Lemper.Containerschifffahrt und Welthandel–eine ’Symbiose’, Mar 2003.http://www.hansika-gmbh.de/PDF/Containerschifffahrt_und_Welthandel.pdf –last check of URL: Jan 11, 2007.

    Google Scholar 

  95. J.-A. Li, S.C.H. Leung, Y. Wu, and K. Liu.Allocation of empty containers between multi-ports.European Journal of Operational Research. In press,doi:10.1016/j.ejor.2006.09.003, online 2006.

    Google Scholar 

  96. J.-A. Li, K. Liu, S.C.H. Leung, and K.K. Lai. Empty container management in a port with long-run average criterion.Mathematical and Computer Modelling, 40:85–100, 2004.

    CrossRef  Google Scholar 

  97. A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu. Crane scheduling with spatial constraints.Naval Research Logistics, 51:386–406, 2004.

    CrossRef  Google Scholar 

  98. A. Lim, B. Rodrigues, and Z. Xu. Approximation schemes for the crane scheduling problem.InAlgorithm Theory – SWAT 2004: 9th Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8–10, 323–335. Springer, Berlin, 2004.

    Google Scholar 

  99. A. Lim, B. Rodrigues, and Z. Xu. Solving the crane scheduling problem using intelligent search schemes(extended abstract).In M. Wallace, ed.,Principles and Practice of Constraint Programming — Proc. of 10th Intern. Conf. CP 2004, Toronto, Canada, Sep 27–Oct 1, 747–751. Springer, Berlin, 2004.

    Google Scholar 

  100. A. Lim, B. Rodrigues, and Z. Xu. A m-parallel crane scheduling problem with a non-crossing constraint.Naval Research Logistics, 54:115–127, 2007.

    CrossRef  Google Scholar 

  101. C.-I. Liu, H. Jula, and P.A. Ioannou. Design, simulation, and evaluation of automated container terminals.IEEE Transactions on Intelligent Transportation Systems, 3:12–26, 2002.

    CrossRef  Google Scholar 

  102. D. Martinssen, D. Steenken, F. WÖlfer, T. Reiners, and S. Voβ. Einsatz bioanaloger Verfahren bei der Optimierung des wasserseitigen Containerumschlags. In H. Sebastian and T. Grünert, eds.,Logistik Management–Supply Chain Management und e-Business, 377–388. Teubner, Stuttgart, 2001.

    Google Scholar 

  103. P.J.M. Meersmans and A.P.M. Wagelmans. Effective algorithms for integrated scheduling of handling equipment at automated container terminals. Technical Report EI 2001-19, Erasmus University Rotterdam–Econometric Institute, June 2001. http://www.eur.nl/WebDOC/doc/econometrie/feweco2001062110133.pdf–l% ast check of URL: Jan 08, 2007.

    Google Scholar 

  104. L. Moccia, J.-F. Cordeau, M. Gaudioso, and G. Laporte. A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal.Naval Research Logistics, 53:45–59, 2006.

    CrossRef  Google Scholar 

  105. R.H. MÖhring, E. KÖhler, E. Gawrilow, and B. Stenzel. Conflict-free real-time AGV routing. In H. Fleuren, D. den Hertog, and P. Kort, eds.,Operations Research Proceedings 2004, 18–24. Springer, Berlin, 2005.

    CrossRef  Google Scholar 

  106. G. Muller.Intermodal Freight Transportation. Eno Foundation for Transportation, Westport, CN, 1995.

    Google Scholar 

  107. K.G. Murty, J. Liu, Y.-w. Wan, and R. Linn. A decision support system for operations in a container terminal.Decision Support Systems, 39:309–332, 2005.

    CrossRef  Google Scholar 

  108. R. Namboothiri and A.L. Erere. A column generation heuristic for local drayage routing given a port access appointment system, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/erera_nambo.pdf – last check of URL: April 19, 2007.

    Google Scholar 

  109. W.C. Ng. Crane scheduling in container yards with inter-crane interference.European Journal of Operational Research, 164:64–78, 2005.

    CrossRef  Google Scholar 

  110. W.C. Ng and K.L. Mak. Sequencing of container pickup trucks in container yard blocks.International Journal of Industrial Engineering, 11:82–89, 2004.

    Google Scholar 

  111. W.C. Ng and K.L. Mak. An effective heuristic for scheduling a yard crane to handle jobs with different ready times.Engineering Optimization, 37:867–877, 2005.

    CrossRef  Google Scholar 

  112. W.C. Ng and K.L. Mak. Yard crane scheduling in port container terminals.Applied mathematical modelling, 29:263–276, 2005.

    CrossRef  Google Scholar 

  113. W.C. Ng and K.L. Mak. Quay crane scheduling in container terminals.Engineering Optimization, 38:723–737, 2006.

    CrossRef  Google Scholar 

  114. W.C. Ng, K.L. Mak, and Y.X. Zhang. Scheduling trucks in container terminals using a genetic algorithm.Engineering Optimization, 39:33–47, 2007.

    CrossRef  Google Scholar 

  115. V.D. Nguyen and K.H. Kim. A dispatching method for automated lifting vehicles in automated port container terminals, 2007. Paper presented at the Intern. Conf. on Intelligent Manufacturing & Logistics Systems (IML 2007), Kitakyushu, Japan, Feb 26–28.

    Google Scholar 

  116. E. Nishimura, A. Imai, and S. Papadimitriou. Yard trailer routing at a maritime container terminal.Transportation Research-E, 41:53–76, 2005.

    CrossRef  Google Scholar 

  117. NKM Noell Special Cranes GmbH & Co KG.Crane construction. http://www.nkmnoell.com/–last check of URL: Jan 04, 2007,Sep 2003.

    Google Scholar 

  118. J.A. Ottjes, H.P.M. Veeke, M.B. Duinkerken, J.C. Rijsenbrij, and G.Lodewijks. Simulation of a multiterminal system for container handling.OR Spectrum, 28:447–468, 2006.

    CrossRef  Google Scholar 

  119. Y.-M. Park and K.H. Kim. A scheduling method for berth and quay cranes.OR Spectrum, 25:1–23, 2003.

    CrossRef  Google Scholar 

  120. R.I. Peterkofsky and C.F. Daganzo. A branch and bound solution method for the crane scheduling problem.Transportation Research-B, 24B:159–172, 1990.

    CrossRef  Google Scholar 

  121. L. Qiu, W.-J. Hsu, S.Y. Huang, and H. Wang. Scheduling and routing algorithms for AGVs: A survey.International Journal of Production Research, 40:745–760,2002.

    CrossRef  Google Scholar 

  122. H.D. Ratliff and A.S. Rosenthal. Order-picking in a rectangular warehouse: A solvable case of the traveling salesman problem.Operations Research, 31:507–521, 1983.

    Google Scholar 

  123. L. Rohter, C. Jackson, B. Dahnke, A. Iris, and G. Rawling.Automated shipping container transportation system design for Chicago, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/dahnke.pdf–last check of URL:April 19, 2007.

    Google Scholar 

  124. S. Roop.The freight shuttle: The crisis in freight transportation and theopportunity for a green alternative, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/Roop.pdf–last check of URL:April 19, 2007.

    Google Scholar 

  125. Y. Saanen, J. van Meel, and A. Verbraeck. The next generation automated container terminals. Technical report, TBA Nederland/Delft University of Technology, 2003.

    Google Scholar 

  126. Y.A. Saanen and M.V. Valkengoed. Comparison of three automated stacking alternatives by means of simulation. In M.E. Kuhl, N.M. Steiger, F.B. Armstrong, and J.A. Joines, eds.,Proc. of the 2005 Winter Simulation Conf. (WSC 2005), Orlando, FL, USA, Dec 4–7, 1567–1576. ACM, 2005.

    Google Scholar 

  127. S. Scheuerer. A tabu search heuristic for the truck and trailer routing problem.Computers & Operations Research, 33:894–909, 2006.

    CrossRef  Google Scholar 

  128. G. Schneidereit, S. Voβ, A. Parra, and D. Steenken.A general pickup and delivery problem for automated guided vehicles with multiloads: A case study. Working paper, University of Hamburg, 2003.

    Google Scholar 

  129. F. Semet. A two-phase algorithm for the partial accessibility constrained vehicle routing problem.Annals of Operations Research, 61:45–65, 1995.

    CrossRef  Google Scholar 

  130. X.N. Shi and S. Voβ.Container terminal operations under the influence of shipping alliances. Working paper, University of Hamburg, 2007.

    Google Scholar 

  131. K. Shintani, A. Imai, E. Nishimura, and S. Papadimitriou. The container shipping network design problem with empty container repositioning.Transportation Research-E, 43:39–59, 2007.

    CrossRef  Google Scholar 

  132. D.P. Song. Characterizing optimal empty container reposition policy in periodic-review shuttle service systems.Journal of the Operational Research Society, 58:122–133, 2006.

    CrossRef  Google Scholar 

  133. D. Steenken. Fahrwegoptimierung am Containerterminal unter Echtzeitbedingungen.OR Spektrum, 14:161–168, 1992.

    CrossRef  Google Scholar 

  134. D. Steenken. Optimised vehicle routing at a seaport container terminal.ORbit, 4:8–14, 2003.

    Google Scholar 

  135. D. Steenken, A. Henning, S. Freigang, and S. Voβ. Routing of straddle carriers at a container terminal with the special aspect of internal moves.OR Spektrum, 15:167–172, 1993.

    CrossRef  Google Scholar 

  136. D. Steenken, S. Voβ, and R. Stahlbock. Container terminal operations and operations research – a classification and literature review.OR Spectrum, 26:3–49, 2004.

    CrossRef  Google Scholar 

  137. M. Taleb-Ibrahimi, B. de Castilho, and C.F. Daganzo. Storage space vs handling work in container terminals.Transportation Research-B, 27:13–32, 1993.

    CrossRef  Google Scholar 

  138. K.C. Tan, Y.H. Chew, and L.H. Lee. A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems.European Journal of Operational Research, 172:855–885, 2006.

    CrossRef  Google Scholar 

  139. T. Thurston and H. Hu. Distributed agent architecture for port automation. InProc. of the 26th Annual Intern. Computer Software and Applications Conf. (COMPSAC′02), Oxford, UK, Aug 26–29, 81–87. IEEE Computer Society, Los Alamitos, CA, USA, 2002.

    Google Scholar 

  140. P. Toth and D. Vigo, eds.The Vehicle Routing Problem. Society for Industrial & Applied Mathematics, SIAM, Philadelphia, 2002.

    Google Scholar 

  141. United Nations Conference on Trade and Development–secretariat. Review of maritime transport, Dec 2006. http://www.unctad.org/en/docs/rmt2006_en.pdf–last check of URL: Jan 8, 2007.

    Google Scholar 

  142. R. van der Meer.Operational Control of Internal Transport. Phd, Erasmus University, Rotterdam, The Netherlands, 2000.

    Google Scholar 

  143. A.W. Veenstra, N. Lang, and B. van den Rakt. Economic analysis of a container terminal simulation.International Journal of Logistics, 7:263–279, 2004.

    CrossRef  Google Scholar 

  144. M. Vidovic, T. Baltacioglu, Ö. Yurt, and G. Özkan. Matching algorithms for the vehicle routing in containers delivery and collecting problems. InProc. of The 7th Balkan Conf. on Operational Research (BACOR 05), Constanta, Romania, May 25–28, 2005. http://fmi.unibuc.ro/balkan-conf/CD/Section4/Vidovic.pdf–last check of URL: Jan 14, 2007.

    Google Scholar 

  145. I.F.A. Vis. A comparative analysis of storage and retrieval equipment at a container terminal.International Journal of Production Economics, 103:680–693, 2006.

    CrossRef  Google Scholar 

  146. I.F.A. Vis. Survey of research in the design and control of automated guided vehicle systems.European Journal of Operational Research, 170:677–709, 2006.

    CrossRef  Google Scholar 

  147. I.F.A. Vis and R. de Koster. Transshipment of containers at a container terminal: An overview.European Journal of Operational Research, 147:1–16, 2003.

    CrossRef  Google Scholar 

  148. I.F.A. Vis, R. de Koster, K.J. Roodbergen, and L.W.P. Peeters. Determination of the number of automated guided vehicles required at a semi-automated container terminal.Journal of the Operational Research Society, 52:409–417, 2001.

    CrossRef  Google Scholar 

  149. I.F.A. Vis and I. Harika. Comparison of vehicle types at an automated container terminal.OR Spectrum, 26:117–143, 2004.

    CrossRef  Google Scholar 

  150. B. Volk. Growth factors in container shipping, Apr 2002. http://maritimebusiness.amc.edu.au/papers/AMC3_GRO.pdf–last check of URL: Jan 8, 2007.

    Google Scholar 

  151. S. Voβ and J.W. Böse. Innovationsentscheidungen bei logistischen Dienstleistern – Praktische Erfahrungen in der Seeverkehrswirtschaft. In W. Dangelmaier and W. Felser, eds.,Das reagible Unternehmen, 253–282. HNI, Paderborn, 2000.

    Google Scholar 

  152. S. Voβ and J.R. Daduna, eds.Computer-Aided Scheduling of Public Transport. Springer, Berlin, 2001.

    Google Scholar 

  153. J.C.F. Wong and J.M.Y. Leung.On a vehicle routing problem with time windows and stochastic travel times. Technical report, Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, China, 2002.

    Google Scholar 

  154. H. Zhang and K.H. Kim. Dual cycling quay crane optimization with constraints of twin lift, 2007. Paper presented at the Intern. Conf. on Intelligent Manufacturing & Logistics Systems (IML 2007), Kitakyushu, Japan, Feb 26–28.

    Google Scholar 

  155. J. Zhang, P.A. Ioannou, and A. Chassiakos. Intelligent transportation system for container movement between inland port and terminals, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA. http://www.metrans.org/nuf/documents/Zhang.pdf–last check of URL: April 19, 2007.

    Google Scholar 

  156. Y. Zhu and A. Lim. Crane scheduling with spatial constraints: Mathematical model and solving approaches. InAI&M 30-2004, Eighth Intern. Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, USA, Jan 4–6, 2004.

    Google Scholar 

  157. Y. Zhu and A. Lim. Crane scheduling with non-crossing constraint.Journal of the Operational Research Society, 57:1464–1471, 2006.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stahlbock, R., Voβ, S. (2008). Vehicle Routing Problems and Container Terminal Operations – An Update of Research. In: Golden, B., Raghavan, S., Wasil, E. (eds) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77778-8_25

Download citation