Skip to main content

Nanostructured Flexible Materials: Metal Rubber™ Strain Sensors

  • Chapter
Sensors Based on Nanostructured Materials

Abstract

Strain sensors are fundamental building blocks in measurement of materials and structures. Conventional foil strain gages are based on macroscopic principles of bulk material deformation due to stress, and changes in the electrical resistance of deformed bulk metal geometries. Nanostructured strain sensors that operate based on very different physical principles may be envisioned. This chapter discusses such nanostructured strain sensor devices based on self-assembled Metal Rubber™ materials. The first part of the chapter reviews the background on self-assembly processing. The second part of the chapter discusses Metal Rubber™ manufacturing and Metal Rubber™ strain sensor operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc., 1917. 39: pp. 1848–1906.

    Article  CAS  Google Scholar 

  2. Langmuir, I., The mechanism of the surface phenomena of flotation. Trans. Faraday Soc., 1920. 15: pp. 62–74.

    Article  CAS  Google Scholar 

  3. K. S. V. Instruments LTD, Langmuir and Langmuir-Blodgett films, Application Note #117.

    Google Scholar 

  4. Hann, R. A., Molecular Structure Monolayer Properties, in Langmuir-Blodgett Films, ed. G. Roberts, 1990, Plenum Press.

    Google Scholar 

  5. Hamachi, I.; Noda, S.; Kunitake, T., Layered arrangement of oriented myoglobins in cast films of a phosphate bilayer membrane. J. Am. Chem. Soc., 1990. 112: pp. 6744–6745.

    Article  CAS  Google Scholar 

  6. Prime, K. L.; Whitesides, G. M., Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc., 1993. 115: pp. 10714–10721.

    Article  CAS  Google Scholar 

  7. Ventra, M. D.; Evoy, S.; Heflin, J. R. Jr., Introduction to Nanoscale Science and Technology, ed. M. D. Ventra; S. Evoy; J. R. Heflin Jr., 2004, Springer.

    Google Scholar 

  8. Decher, G.; Hong, J. D.; Schmitt, J., Buildup of ultrathin multilayer films by self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992. 210–211: pp. 831–835.

    Article  Google Scholar 

  9. Iler, R. K., Multilayers of colloidal particles. J. Colloid Inter. Sci , 1966. 21: pp. 569–594.

    Article  CAS  Google Scholar 

  10. Liu, Y.; Claus, R. O., Layer-by-layer electrostatic self-assembly of nanoscale Fe 3 O 4 particles and polyimide precursor on silicon and silica surfaces. Appl. Phys. Lett., 1997. 71: pp. 2265–2267.

    Article  CAS  Google Scholar 

  11. Wang, Y.-X.; Du, W.; Spillman, W. B., Jr.; Claus, R. O., Biocompatible thin film coatings fabricated using the electrostatic self-assembly process. Proc. SPIE, 2001: 4265: pp. 142–151.

    Google Scholar 

  12. Lvov, Y.; Decher, G.; Sukhorukov, G., Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules, 1993. 26: pp. 5396–5399.

    Article  CAS  Google Scholar 

  13. Keller, S. W.; Kim, H.-N.; Mallouk, T. E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular “Beaker” epitaxy. J. Am. Chem. Soc., 1994. 116: pp. 8817–8818.

    Article  CAS  Google Scholar 

  14. Feldheim, D. L.; Grabar, K. C.; Natan, M. J.; Mallouk, T. E., Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures. J. Am. Chem. Soc., 1996. 118: pp. 7640–7641.

    Article  CAS  Google Scholar 

  15. Liu, Y.; Wang, Y.; Y.-X.; Claus, R. O., Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity. Chem. Phys. Lett., 1998. 298: pp. 315–319.

    Article  CAS  Google Scholar 

  16. Eckle, M.; Decher, G., Tuning the performance of layer-by-layer assembled by controlling the position of isolating clay barrier sheets. Nano Lett., 2001. 1: pp. 45–49.

    Article  CAS  Google Scholar 

  17. Kunitake, T., Anisotropic incorporation of functional molecules and synthesis of low-dimensional clusters in cast multibilayer films. Mol. Cryst. Liq. Cryst., 1994. 255: pp. 7–16.

    Article  CAS  Google Scholar 

  18. Malmsten, M., Biopolymers at Interfaces, ed. M. Malmsten, 2003, Marcel Dekker, Inc.

    Google Scholar 

  19. Lvov, Y.; Decher, G.; Mohwald, H., Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir, 1993. 9: pp. 481–486.

    Article  CAS  Google Scholar 

  20. Schmitt, J.; Grunewald, T.; Decher, G.; Pershan, P. S.; Kjaer, K.; Losche, M., Internal structure of layer-by-layer adsorbed polyelectrolyte films: A neutron and X-ray reflectivity study. Macromolecules, 1993. 26: pp. 7058–7063.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jullian, C., Lalli, J., Davis, B., Claus, R. (2009). Nanostructured Flexible Materials: Metal Rubber™ Strain Sensors. In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_10

Download citation

Publish with us

Policies and ethics