Skip to main content

Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation

  • Chapter
  • First Online:
Toward Functional Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 5))

Abstract

Fabrication of oxide nanoparticles (NPs) in transparent insulators by metal ion implantation and subsequent thermal oxidation (II&TO) is reviewed. After a short historical review of the II&TO method, fundamental issues concerning two important processes in the II&TO method, i.e., (i) formation of metal NPs by ion implantation and (ii) thermal oxidation of the metal NPs, are described. Then the highlights of this chapter, i.e., the formation of oxide NPs by the II&TO method, are reviewed. Oxide NP systems of NiO, CuO, and ZnO have been formed by the conventional II&TO method, i.e., the II&TO method using atmospheric pressure of oxygen gas. Each of the NP system shows different characteristics. While NiO, CuO (and Cu2O) NP systems show the oxide formation with little redistribution of the depth profiles, i.e., the oxide NPs are retained inside the SiO2 substrate, ZnO NPs are formed on the surface of the SiO2 substrate after prominent depth redistribution. Furthermore, recent developments in the II&TO method, i.e., the second generation of the II&TO method, are shown. ZnO NPs embedded in SiO2 substrate are formed by low temperature and long-term oxidation. Cu2O NPs, which are not most stable under atmospheric pressure of oxygen, are formed by two-step annealing. Consequently, selective formation of CuO and Cu2O NPs is possible using the conventional II&TO and the two-step II&TO method, respectively. Finally, some remaining aspects of the oxide NP formation by the II&TO method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari AR, Huang MB, Wu D, Dovidenko K, Wei BQ, Vajtai R, Ajayan PM (2005) Appl. Phys. Lett. 86, 053104.

    Google Scholar 

  2. Amekura H, Takeda Y, Kono K, Kitazawa H, Kishimoto N (2003) Rev. Adv. Mater. Sci. 5, 178.

    CAS  Google Scholar 

  3. Amekura H, Kishimoto N (2003) J. Appl. Phys. 94, 2585.

    CAS  Google Scholar 

  4. Amekura H, Kitazawa H, Kishimoto N (2004) Nucl. Instrum. Methods B219–220, 825.

    Google Scholar 

  5. Amekura H, Takeda Y, Kishimoto N (2004) Nucl. Instrum Methods B222, 96.

    Google Scholar 

  6. Amekura H, Kitazawa H, Umeda N, Takeda Y, Kishimoto N (2004) Nucl. Instrum. Methods B 222, 114.

    Google Scholar 

  7. Amekura H, Umeda N, Takeda Y, Lu J, Kishimoto N (2004) Appl. Phys. Lett. 85, 1015.

    CAS  Google Scholar 

  8. Amekura H, Fudamoto Y, Takeda Y, Kishimoto N (2005) Phys. Rev. B 71, 172404.

    Google Scholar 

  9. Amekura H, Umeda N, Takeda Y, Lu J, Kono K, Kishimoto N (2005) Nucl. Instrum. Methods B230, 193.

    Google Scholar 

  10. Amekura H, Umeda N, Sakuma Y, Kishimoto N, Buchal Ch (2005) Appl. Phys. Lett. 87, 013109.

    Google Scholar 

  11. Amekura H, Kono K, Takeda Y, Kishimoto N (2005) Appl. Phys. Lett. 87, 153105.

    Google Scholar 

  12. Amekura H, Umeda N, Sakuma Y, Plaksin OA, Takeda Y, Kishimoto, Buchal Ch (2006) Appl. Phys. Lett. 88, 153119.

    Google Scholar 

  13. Amekura H, Plaksin OA, Yoshitake M, Takeda Y, Kishimoto N, Buchal Ch (2006) Appl. Phys. Lett. 89, 023115.

    Google Scholar 

  14. Amekura H, Umeda N, Takeda Y, Kishimoto N (2006) Appl. Phys. Lett. 89, 223120.

    Google Scholar 

  15. Amekura H, Umeda N, Yoshitake M, Kono K, Kishimoto N, Buchal Ch (2006) J. Cryst. Growth 287, 2.

    CAS  Google Scholar 

  16. Amekura H, Kono K, Kishimoto N, Buchal Ch (2006) Nucl. Instrum. Methods B 242, 96.

    CAS  Google Scholar 

  17. Amekura H, Plaksin OA, Kono K, Takeda Y, Kishimoto N (2006) J. Phys. D: Appl. Phys. 39, 3659.

    CAS  Google Scholar 

  18. Amekura H, Ohnuma M, Kishimoto N, Buchal Ch, Mantl S (2008) J. Appl. Phys. 104, 114309.

    Google Scholar 

  19. Amekura H, Umeda N, Boldyryeva H, Kishimoto N, Buchal Ch, Mantl S (2007) Appl. Phys. Lett. 90, 083102.

    Google Scholar 

  20. Amekura H, Sakuma Y, Yoshitake M, Takeda Y, Kishimoto N, Buchal Ch (2007) Nucl. Instrum Methods B 257, 64.

    CAS  Google Scholar 

  21. Amekura H, Plaksin OA, Kishimoto N, Buchal Ch (2007) Surf. Coating Tech. 210, 8214.

    Google Scholar 

  22. Amekura H, Yoshitake M, Plaksin OA, Kishimoto N, Buchal Ch, Mantl S (2007) Appl. Phys. Lett. 91, 063113.

    Google Scholar 

  23. Amekura H, Umeda N, Kono K, Takeda Y, Kishimoto N, Buchal Ch, Mantl S (2007) Nanotechnology 18, 395707.

    Google Scholar 

  24. Amekura H, Wang HS, Hishita S, Pan J, Kishimoto N, Buchal Ch, Mantl S (2009) Nanotechnology 20, 065303.

    Google Scholar 

  25. Arnold GW (1975) J. Appl. Phys. 46, 4466.

    CAS  Google Scholar 

  26. Arnold GW and Borders JA (1977) J. Appl. Phys. 48, 1488.

    CAS  Google Scholar 

  27. Balamurugan B, Aruan I, Mehta BR (2004) Phys. Rev. B 69, 165419.

    Google Scholar 

  28. Beyer V, von Borany J (2008) Phys. Rev. B 77, 014107.

    Google Scholar 

  29. Brongersma ML, Snoeks E, van Dillen T, Polman A (2002) J. Appl. Phys. 88, 59.

    Google Scholar 

  30. Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH (1999) Phys. Rev. Lett. 82, 2278.

    CAS  Google Scholar 

  31. Cattaruzza E (2000) Nucl. Instrum Methods B 169, 141.

    CAS  Google Scholar 

  32. Chang H, Park HD, Sohn KS (1999) J. Korean Phys. Soc. 34, 545.

    CAS  Google Scholar 

  33. Chen J, Mu R, Ueda A, Wu MH, Tung YS, Gu Z, Henderson DO, White CW, Budai JD, Zuhr RA (1998) J. Vac. Sci. Technol. A 16, 1409.

    Google Scholar 

  34. Ching WY, Xu Y-N, Wong KW (1989) Phys. Rev. B 40, 7684.

    Google Scholar 

  35. de Julian Fernandez C, Mattei G, Sada C, Battaglin C, Mazzoldi P (2006) Mater. Sci. Eng. C 26, 987.

    Google Scholar 

  36. De Marchi G, Mattei G, Mazzoldi P, Sada C, Miotello A (2002) J. Appl. Phys. 92, 4249.

    Google Scholar 

  37. Devine RAB (1994) Nucl. Instrum Methods B 91, 378.

    Google Scholar 

  38. Ding X-Z, Chiah MF, Cheung WY, Wong SP, Xu JB, Wilson IH, Wang H-M, Chen L-Z, Liu X-H (1999) J. Appl. Phys. 86, 2550.

    CAS  Google Scholar 

  39. Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J. Phys. Chem. B 180, 52.

    Google Scholar 

  40. D’Orleans C, Stoquert, JP, Estournes C, Cerruti C, Grob JJ, Guille JL, Haas F, Muller D, Richard-Plouet M (2003) Phys. Rev. B 67, 220101.

    Google Scholar 

  41. Elliott RJ (1961) Phys. Rev. 124, 340.

    CAS  Google Scholar 

  42. Espiau de Lamaestre R, Bernas H (2006) Phys. Rev. B 73, 125317.

    Google Scholar 

  43. Estourenes C, Lutz T, Guille JL (1996) J. Non-cryst. Solids 197, 192.

    Google Scholar 

  44. FACT (Facility for the Analysis of Chemical Thermodynamics) http://www.crct.polymtl.ca/fact/ http://www.crct.polymtl.ca/reacweb.htm

  45. Farlow GC, Sklad PS, White CW, McHargue CJ (1990) J. Mater Res. 5, 1502.

    CAS  Google Scholar 

  46. Fromknecht R, Linker G, Sun K, Zhu S, Wang LM, van Veen A, van Huis MA, Weimann T, Wng J, Niemeyer J, Eichhorn F, Wang T (2004) Mat. Res. Soc. Symp. Proc. 792, 151.

    CAS  Google Scholar 

  47. Gonella F, Mazzoldi P (2002) In: Nalwa HS (de) Handbook of nanostructured materials and nanotechnology. Academic Press, San Diego, Vol. 4, Chap. 2.

    Google Scholar 

  48. Griscom DL (1991) J. Ceramic. Soc. Jpn. 99, 923.

    CAS  Google Scholar 

  49. Hache F, Ricard D, Flytzanis C (1986) J. Opt. Soc. Am. B 3, 1647.

    Google Scholar 

  50. Hamann DR (1996) Phys. Rev. Lett. 76, 660.

    CAS  Google Scholar 

  51. Han C-J, Hems CR (1988) J. Electrochem. Soc. 135, 1824.

    CAS  Google Scholar 

  52. Haglund, RF, Yang L, Magruder RH, White CW, Zuhr RA, Yang L, Dorsinville, Alfano RR (1994) Nucl. Instrum Methods B 91, 493.

    Google Scholar 

  53. He H, Wang Y, Zou Y (2003) J. Phys. D: Appl. Phys. 36, 2972.

    CAS  Google Scholar 

  54. Heilmann A, Kreibig U (2000) Eur. Phys. J: Appl. Phys. 10, 193.

    CAS  Google Scholar 

  55. Heinig K-H, Schmidt B, Markwitz A, Groetzschel R, Strobel M, Ostwald S (1999) Nucl. Instrum. Methods B 148, 969.

    Google Scholar 

  56. Heinig K-H, Mueller T, Schmidt B, Strobel M, Moeller W (2003) Appl. Phys. A 77, 17.

    Google Scholar 

  57. Ho AY, Mitsui N, Mochiduki K, Fujita T, Ijima K, Saito Y (2008) Jpn. J. Appl. Phys. 47, 4612.

    Google Scholar 

  58. Hosono H (1993) Jpn. J. Appl. Phys. 32, 3892.

    CAS  Google Scholar 

  59. Hosono H, Imagawa H (1994) Nucl. Instrum Methods B 91, 510.

    Google Scholar 

  60. Hosono H (1995) Phys. Rev. Lett. 74, 110.

    CAS  Google Scholar 

  61. Ikeyama M, Nakao S, Tazawa S, Kadono K, Kamada K (2001) Nucl. Instrum. Methods B 175-177, 652.

    CAS  Google Scholar 

  62. Ito T, Masumi T (1997) J. Phys. Soc. Jpn. 66, 2185.

    CAS  Google Scholar 

  63. Ito T, Kawashima T, Yamaguchi H, Masumi T (1998) J. Phys. Soc. Jpn. 67, 2125.

    CAS  Google Scholar 

  64. Ito T, Yamaguchi H, Masumi T, Adachi S (1998) J. Phys. Soc. Jpn. 67, 3304.

    CAS  Google Scholar 

  65. JCPDS library, No. 40836 for Cu, No. 481548 for CuO, and No. 50667 for Cu2O, International Centre for Diffraction Data.

    Google Scholar 

  66. Jin Y-G, Chang KJ (2001) Phys. Rev. Lett. 86, 1793.

    CAS  Google Scholar 

  67. Johannessen B, Kluth P, Glover CJ, Azevedo GM, Llewllyn DL, Foran GJ, Ridgeway MC (2005) J. Appl. Phys. 98, 024307.

    Google Scholar 

  68. Kaiser U, Muller DA, Grazul JL, Chuvilin A, Kawasaki M (2002) Nature Materials 1, 102.

    CAS  Google Scholar 

  69. Kawasaki M, Ohtomo A, Ohkubo I, Koinuma H, Tang ZK, Yu P, Wong GKL (1998) Mater. Sci. Eng. B56, 239.

    CAS  Google Scholar 

  70. Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) J. Am. Chem. Soc.125, 10684.

    CAS  Google Scholar 

  71. Kishimoto N, Gritsyna VT, Kono K, Amekura H, Saito T (1997) Nucl. Instrum. Methods B 127/128, 579.

    CAS  Google Scholar 

  72. Kishimoto N, Gritsyna VT, Kono K, Amekura H, Saito T (1997) Mater. Res. Soc. Symp. Proc. 438, 435.

    CAS  Google Scholar 

  73. Kleinman L, Mednick K (1980) Phys. Rev. 21, 1549.

    CAS  Google Scholar 

  74. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Spring, Berlin.

    Google Scholar 

  75. Kuiri PK, Lenka HP, Ghatak J, Sahu G, Joseph B, Mahapatra DP (2007) 102, 024315.

    Google Scholar 

  76. Kubaschewski O, Evans ELl, Alcock CB (1967) Metallurgical Thermochemistry, 4th ed. Pergamon, London.

    Google Scholar 

  77. Lee JK, Tewell CR, Schulze RK, Nastasi M, Hamby DW, Lucca DA, Jung HS, Hong KS (2005) Appl. Phys. Lett. 86, 183111.

    Google Scholar 

  78. Liu YC, Xu HY, Mu R, Henderson DO, Lu YM, Zhang JY, Shen DZ, Fan XW, White CW (2003) Appl. Phys. Lett. 83, 1210.

    CAS  Google Scholar 

  79. Liu YX, Liu YC, Shen DZ, Zhong GZ, Fan XW, Kong XG, Mu R, Henderson DO (2002) J. Cryst. Growth 240, 152.

    CAS  Google Scholar 

  80. Liu YX, Liu YC, Shen DZ, Zhong GZ, Fan XW, Kong XG, Mu R, Henderson DO (2002) Solid State Commun. 121, 531.

    CAS  Google Scholar 

  81. Liu YX, Liu YC, Shao CL, Mu R (2004) J. Phys. D: Appl. Phys. 37, 30215.

    Google Scholar 

  82. Lopez R, Haynes TE, Boatner LA, Feldman, Haglund RF (2002) Opt. Lett. 27, 1327.

    CAS  Google Scholar 

  83. Marques C, France N, Alves LC, da Silva RC, Alves E, Safran G, McHargue CJ (2007) Nucl. Insturm. Methods 257, 515.

    CAS  Google Scholar 

  84. Maxwell-Garnett JC (1906) Philos. R. Soc. London 205, 237.

    Google Scholar 

  85. Masumi T, Yamaguchi H, Ito T, Shimoyama H (1998) J. Phys. Soc. Jpn. 67, 67.

    CAS  Google Scholar 

  86. Mazzoldi P, Mttei G (2005) Rivista del Nuovo Cimento 28, 1.

    CAS  Google Scholar 

  87. McHargue CJ, Farlow GC, Sklad PS, White CW, Perez A, Kornilios N, Marest G (1987), Nucl. Insturm. Methods B 19/20, 813.

    Google Scholar 

  88. Meldrum A, Haglund RF, Boatner LA, White CW (2001) Adv. Mater 13, 1431.

    CAS  Google Scholar 

  89. Mie G (1908) Ann. Phys. 25, 377 [in German].

    CAS  Google Scholar 

  90. Mitsuishi K, Song M, Furuya K, Allen CW, Birtcher RC, Dahmen U (2003) Nucl. Instrum. Methods B 206, 109.

    Google Scholar 

  91. Moeller W, Eckstein W (1984) Nucl. Instrum. Methods B 2, 814.

    Google Scholar 

  92. Moeller W, Eckstein W, Biersack JP (1988) Computer Phys. Commun. 51, 355.

    CAS  Google Scholar 

  93. Mueller T, Heinig K-H, Schmidt B (2002) Mater. Sci. Eng. C19, 209.

    Google Scholar 

  94. Muroi M, Street R, McCormick PG (2000) J. Appl. Phys. 87, 3242.

    Google Scholar 

  95. Muntele I, Muntel C, Thevenard P, Ila D (2007) Surf. Coating Tech., 201, 8557.

    CAS  Google Scholar 

  96. Nagoshi M (1998) -ray Photoelectron Spectroscopy, in The Surface Science Society of Japan (ed.), Maruzen, Tokyo p. 137 [in Japanese].

    Google Scholar 

  97. Nakajima A, Futatsugi T, Nakao H, Usuki T, Horiguchi N, Yokoyama N (1998) J. Appl. Phys. 84, 1316.

    CAS  Google Scholar 

  98. Ogasawara T, Ashida M, Motoyama N, Eisaki H, Uchida S, Tokura Y, Ghosh H, Shukla A, Mazumdar S, Kuwata-Gonokami M (2000) 85, 2204.

    Google Scholar 

  99. Ohkubo M, Hioki T, Kawamoto J (1986) J. Appl. Phys. 60, 1325.

    CAS  Google Scholar 

  100. Okubo N, Umeda N, Takeda Y, Kishimoto N (2003) Nucl. Instrum. Methods B 206, 610.

    Google Scholar 

  101. Oliver A, Cheang-Wong JC, Roiz J, Rodriguez-Fernandez L, Hernandez JM, Crespo-Sosa A, Munoz E (2002) Nucl. Instrum Methods B 191, 333.

    Google Scholar 

  102. Orellana W, da Slva AJR, Fazzio A (2001), Phys. Rev. Lett. 87, 155901.

    CAS  Google Scholar 

  103. Ostwald S, Schmidt B, Heinig K-H (2000) Surf. Interface Anal. 29, 249.

    Google Scholar 

  104. Oyoshi K (2002) Jpn. J. Appl. Phys. 41, 6145.

    CAS  Google Scholar 

  105. Oyoshi K, Tagami T, Tanaka S (1991) Jpn. J. Appl. Phys. 30, 1854.

    CAS  Google Scholar 

  106. Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho S-J, Morkoc H (2005) J. Appl. Phys. 98, 0431301.

    Google Scholar 

  107. Palik ED (1998) Handbook of Optical Constants of Solids, Academic Press, San Diego.

    Google Scholar 

  108. Paul GK, Nawa Y, Sato H, Sakurai T, Akimoto K (2006) Appl. Phys. Lett. 88, 141901.

    Google Scholar 

  109. Pena O, Rodriguez-Fernandez L, Cheang-Wong JC, Santiago P, Crespo-Sosa A, Munoz E, Oliver A (2006) J. Non-Cryst. Solids 352, 349.

    CAS  Google Scholar 

  110. Perenboom JAAJ, Wyder P, Meier F (1981) Phys. Reports 78, 173.

    Google Scholar 

  111. Perez A, Treilleux M, Capra T, Griscom DL (1987) J. Mater Res. 2, 910.

    CAS  Google Scholar 

  112. Peyghambarian N, Koch SW, Mysyrowicz A (1993) Introduction to Semiconductor Optics, Prentice-Hall, Englewood Cliffs, NJ, Chap. 7, p. 174.

    Google Scholar 

  113. Plaksin OA, Takeda Y, Amekura H, Kishimoto N (2006) J. Appl. Phys. 99, 044307.

    Google Scholar 

  114. Ramaswamy V, Haynes TE, White CW, Moberly-Chan WJ, Roorda S, Aziz MJ (2005) Nano Lett. 5, 373.

    CAS  Google Scholar 

  115. Ren F, Guo LP, Shi Y, Chen DL, Wu ZY, Jiang CZ (2006) J. Phys. D: Appl. Phys. 39, 488.

    CAS  Google Scholar 

  116. Rizza GC, Stobel M, Heinig K-H, Bernas H (2001) Nucl. Instrum Methods B 178, 78.

    Google Scholar 

  117. Rizza GC, Cheverry H, Gacoin T, Lamasson A, Henrry S (2007) J. Appl. Phys. 101, 014321.

    Google Scholar 

  118. Roiz J, Oliver A, Munoz E, Rodriguez-Fernandez L, Hernandez JM, Cheang-Wong JC (2004) J. Appl. Phys. 95, 1783.

    CAS  Google Scholar 

  119. Ruppin R (1986) J. Appl. Phys. 59, 1355.

    CAS  Google Scholar 

  120. Schmid-Whitley RD, Martinez-Clemente M, Revocolecschi A (1974) J. Cryst. Growth 23, 113.

    Google Scholar 

  121. Shimizu T, Matsumoto T, Goto A, Chandrasekar Rao TV, Yoshimura K, Kosuge K (2003) Phys. Rev. B 68, 224433.

    Google Scholar 

  122. Skuja L, Guttler B (1996) Phys. Rev. Lett. 77, 2093.

    CAS  Google Scholar 

  123. Snoeks E, Weber T, Cacciato A, Plolman A (1995) J. Appl. Phys. 78, 4723.

    CAS  Google Scholar 

  124. Strobel M (1999) Modeling and Computer Simulation of Ion Beam Synthesis of Nanostructures. Forschungszentrum Rossendorf, Wissenschaftlich-Technische Berichte FZR-277.

    Google Scholar 

  125. Strobel M, Heinig K-H, Moeller W, Meldrum A, Zhou DS, White CW, Zuhur RA (1999) Nucl. Instrum. Methods B 147, 343.

    Google Scholar 

  126. Strobel M, Heinig K-H, Moeller W (1999) Nucl. Instrum. Methods B 148, 104.

    Google Scholar 

  127. Strobel M, Heinig K-H, Moeller W (2001) Phys. Rev. B 64, 245422.

    Google Scholar 

  128. Swalin RA (1962) Thermodynamics of Solids, John Wiley and Sons, New York.

    Google Scholar 

  129. Tagliente MA, Massaro M (2008) Nucl. Instrum. Methods B 266, 1055.

    Google Scholar 

  130. Tagliente MA, Massaro M, Mattei G, Mazzoldi P, Bello V, Pellegrini G (2008) J. Appl. Phys. 104, 093505.

    Google Scholar 

  131. Townsend PD, Chandler PJ, Zhang L (1994) Optical Effects of Ion Implantation. Cambridge University Press, Cambridge.

    Google Scholar 

  132. Tsuda N, Nasu K, Fujimori A, Shiratori K (1993) Electron conduction in oxides. Springer, Berlin.

    Google Scholar 

  133. Tsukazaki A, et al. (2005) Nature-Mater. 4, 42.

    CAS  Google Scholar 

  134. Umeda N, Kishimoto N, Takeda Y, Lee CG, Gritsyna VT (2000) Nucl. Instrum. Methods B 166–167, 864.

    Google Scholar 

  135. Umeda N, Amekura H, Kishimoto N (2008) Vacuum 83, 645.

    Google Scholar 

  136. Valentin E, Bernas H, Ricolleau C, Creuzet F (2001) Phys. Rev. Lett. 86, 99.

    CAS  Google Scholar 

  137. van Huis MA, van Veen A, Schut H, Kooi BJ, De Hosson JThM, Du XS, Hibma T, Fromknecht R (2004) Nucl. Instrum. Methods B 216, 390.

    Google Scholar 

  138. White CW, Meldrum A, Sonder E, Budai JD, Zuhr RA, Withrow SP, Henderson DO (1999) Mat. Res. Soc. Symp. Proc. 540, 219.

    CAS  Google Scholar 

  139. White CW, Withrow SP, Budai JD, Boatner LA, Sorge KD, Thompson JR, Beaty KS, Meldrum A (2002) Nucl. Instrum. Methods B 191, 437.

    Google Scholar 

  140. Williams EL (1965) J. Am Cer. Soc. 48, 190.

    CAS  Google Scholar 

  141. Wu H, Wang W, Zhu W (2006) J. Phys. Chem. B 110, 13829.

    Google Scholar 

  142. Xiang X, Zu XT, Bao JW, Zhu S, Wang LM (2005) J. Appl. Phys. 98, 073524.

    Google Scholar 

  143. Xiang X, Zu XT, Zhu S, Wang LM (2005) Physica B369, 88.

    Google Scholar 

  144. Xiang X, Zu XT, Zhu S, Wei QM, Zhang CF, Sun K, Wang LM (2006) Nanotechnology 17, 2636.

    CAS  Google Scholar 

  145. Yang H, Ouyang J, Tang A, Xiao Y, Li X, Dong X, Yu Y (2006) Mater. Res. Bull. 41, 1310.

    CAS  Google Scholar 

  146. Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L, Jiang J (2005) J. Phys. Chem. 109, 14011.

    CAS  Google Scholar 

  147. Yarovaya RG, Shklyarevskii IN, El-Shazly AFA (1974) Sov. Phys. - JETP 38, 331.

    Google Scholar 

  148. Zhao J, Chen X, Wang G (1994) Phys. Rev. B 50, 15424.

    Google Scholar 

  149. Ziegler JF, Biersack JP, Littmark U (1985) The Stopping and Range of Ions in Solids, Pergamon, New York, Chap. 8. http://www.srim.org/

  150. Zou JM, Kim M, O’Keeffe M, Spence JCH (1999) Nature 401, 49.

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. N. Umeda, Y. Takeda, K. Kono, M. Yoshitake, Y. Sakuma, M. Ohnuma, S. Hishita, M. Tanaka, H.-S. H. Boldyryeva (NIMS), Dr. Y. Katsya (Spring-8 service Co. Ltd.), Wang, O.A. Plaksin (SSC RF, A.I. Leypunsky Institute of Physics. & Power Engineering, Russia), Profs. Ch. Buchal and S. Mantl (Forschungszenturum Juelich, Germany) for collaborations. They appreciate the staffs of BL15XU, NIMS and of Spring-8 for their help at the beam line. The high temperature XRD measurements were performed under the approval of NIMS Beamline station (Proposal No. 2007A4501 and 2007B4502). Also the authors thank Profs. X.T. Zu (University of Electronic Science & Technology, China), Y.C. Liu (Northeast Normal University China), D. Ila (Alabama A&M University, USA), Dr. C. Marques (Instituto Tecnolo’gico e Nuclear, Portugal), Dr. P.K. Kuiri (Institute of Physics, India), Prof. G. Mattei (University of Padova, Italy), Dr. M.A. Tagliente (Centro Ricerche Brindisi, Italy), and Prof. Y. Saito (University of Yamanashi, Japan) for exchange of information.

Some parts of this study were financially supported by JSPS-Kakenhi (No. 18510102), the Budget for Nuclear Research of the MEXT based on the screening and counseling by the Atomic Energy Commission, Futaba Electronics Memorials Foundation, and Nippon Sheet Glass Foundation for Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amekura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Amekura, H., Kishimoto, N. (2009). Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation. In: Wang, Z. (eds) Toward Functional Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77717-7_1

Download citation

Publish with us

Policies and ethics