Skip to main content

Stimuli-Sensitive Nanotechnology for Drug Delivery

  • Chapter

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akagi, T., Ueno, M., Hiraishi, K., Baba, M., & Akashi, M. (2005) AIDS vaccine: Intranasal immunization using inactivated HIV-1-capturing core–corona type polymeric nanospheres. J. Controlled Release, 109, 49–61.

    CAS  Google Scholar 

  • Ahrens, H., Büscher, K., Eck, D., Förster, S., Luap, C., Papastavrou, G., Schmitt, J., Steitz, R., & Helm, C. A. (2004). Poly(styrene sulfonate) self-organization: Electrostatic and secondary interactions. Macromol. Symp., 211, 93–105.

    CAS  Google Scholar 

  • Angelatos, A. S., Radt, B., & Caruso, F. (2005). Light-responsive polyelectrolyte / gold nanoparticle microcapsules. J. Phys. Chem. B, 109, 3071–3076.

    CAS  PubMed  Google Scholar 

  • Antipov, A. A., Sukhorukov, G. B., & Möhwald, H. (2003). Influence of the ionic strength on the polyelectrolyte multilayers’ permeability. Langmuir, 19, 2444–2448.

    CAS  Google Scholar 

  • Arotçaréna, M., Heise, B., Ishaya, S., & Laschewsky. A. (2002). Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsitivity, J. Am. Chem. Soc., 124, 3787–3793.

    PubMed  Google Scholar 

  • Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett., 78, 4217–4220.

    CAS  Google Scholar 

  • Berth, G., Voigt, A., Dautzenberg, H., Donath, E., & Möhwald, H. (2002). Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate. Biomacromol., 3, 579–590.

    CAS  Google Scholar 

  • Bhadra, D., Bhadra, S., Jain, S., & Jain, N. K. (2003). A PEGylated dendritic nanoparticle carrier of fluorouracil. Int. J. Pharm., 257, 111–124.

    CAS  PubMed  Google Scholar 

  • Bruchez, M., Jr., Moronne, M., Gin, P., Weiss S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    CAS  PubMed  Google Scholar 

  • Borodina, T., Markvicheva, E., Kunizhev, S., Möhwald, H., Sukhorukov, G. B. & Kreft, O. (2007). Controlled Release of DNA from Self-Degrading Microcapsules. Macromol. Rapid Commun. 28, 1894–1899.

    Google Scholar 

  • Boulmedais, F., Frisch, B., Etienne, O., Lavalle, Ph., Picart, C., Ogier, J., Voegel, J.-C., Schaaf, P.,& Egles, C. (2004). Polyelectrolyte multilayer films with PEGylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials, 25, 2003–2011.

    CAS  PubMed  Google Scholar 

  • Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. USA, 92, 7297–7301.

    Google Scholar 

  • Burke, S. E., & Barrett, C. J. (2003). pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromol., 4, 1773–1783.

    CAS  Google Scholar 

  • Buscher, K., Graf, K., Ahrens, H., & Helm, C. A. (2002). Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir, 18, 3585–3591.

    Google Scholar 

  • Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K., & Okano, T. (1997). Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Controlled Release , 48, 157–164.

    CAS  Google Scholar 

  • Corbierre, M. K., Cameron, N. S., Sutton, M., Mochrie, S. G. J., Lurio, L. B., Ruhm, A., & Lennox,R. B. (2001). Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices J. Am. Chem. Soc., 126, 2867–2873.

    Google Scholar 

  • Couvreur, P., Barratt, G., Fattal, E., Legrand, P., & Vauthier, C. (2002). Nanocapsule technology: A review. Crit. Rev. Ther. Drug Carrier Syst., 19, 99–134.

    CAS  PubMed  Google Scholar 

  • Das, M., Zhang, H., & Kumacheva, E. (2006). Microgels: Old materials with new applications. Ann. Rev. Mat. Res., 36, 117–142.

    CAS  Google Scholar 

  • Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites, Science, 277, 1232–1237.

    CAS  Google Scholar 

  • Decher, G., & Hong, G. D. (1991). Buildup of ultrathin multilayer films by a self-assembly process: I. consecutive adsorption of anionic and cationic bipolar amphiphiles. Macromol. Chem. Macromol. Symp., 46, 321–327.

    CAS  Google Scholar 

  • Decher, G., Schaaf, P., Voegel, J.-C., & Picart, C. (2004). Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromol., 5, 284–294.

    Google Scholar 

  • De Geest, B. G., Dégunat, C., Sukhorukov, G. B., Braeckmans, K., De Smedt, S. C., & Demeester. J. (2005). Self-rupturing microcapsules. Adv. Mater., 17, 2357–2361.

    Google Scholar 

  • De Geest, B. G., Vandenbroucke, R. E., Guenther, A. M., Sukhorukov, G. B., Hennink, W. E., Sanders, N. N., Demeester, J., & De Smedt, S. C. (2006). Intracellularly degradable polyelectrolyte microcapsules. Adv. Mater., 18, 1005–1009.

    Google Scholar 

  • Diaspro, A., Silvano, D. Krol, S., Cavalleri, O., & Gliozzi, A. (2002). Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir, 18, 5047–5050.

    CAS  Google Scholar 

  • Donath, E., Sukhorukov, G. B., Caruso, F., Davies, S. A., & Möhwald, H. (1998). Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed., 37, 2202–2205.

    CAS  Google Scholar 

  • Dong, L. C., & Hoffman, A. S. (1990). Synthesis and application of thermally reversible heterogels for drug delivery, J. Controlled Release, 13, 21–31.

    CAS  Google Scholar 

  • Dubreuil, F., Elsner N., & Fery, A. (2003). Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur. Phys. J., 12, 215–221.

    CAS  Google Scholar 

  • Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Optical properties of gold nanoparticles. Science, 277, 1078–1081.

    CAS  PubMed  Google Scholar 

  • Escobar-Chávez, J. J., López-Cervantes, M., Naïk, A. Kalia, Y. N., Quintanar-Guerrero, D., & Ganem-Quintanar, A. (2006). Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharmaceut. Sci., 9, 339–358.

    Google Scholar 

  • Estrela-Lopis, I., Leporatti, S., Moya, S., Brandt, A., Donath, E., & Möhwald, H. (2002). SANS studies of polyelectrolyte multilayers on colloidal templates. Langmuir, 18, 7861– 7866.

    CAS  Google Scholar 

  • Faraassen, S., Vörös, J., Csucs, G., Textor, M., Merkle, H. P., & Walter, E. (2003). Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharm. Res., 20, 237–246.

    Google Scholar 

  • Farhat T. R., & Schlenoff J. B. (2001). Ion transport and equilibria in polyelectrolyte multilayers. Langmuir, 17, 1184–1192.

    CAS  Google Scholar 

  • Fery, A., Scholer, B., Cassagneau, T., & Caruso, F. (2001). Nanoporous thin films formed by salt-induced structural changes in multilayers of poly(acrylic acid) and poly(allylamine). Langmuir, 17, 3779–3783.

    CAS  Google Scholar 

  • Fischlechner, M., Zschörnig, O., Hofmann, J., & Donath, E. (2005). Engineering virus functionalities on colloidal polyelectrolyte lipid composites. Angew. Chem. Int. Ed., 44, 2892–2895.

    CAS  Google Scholar 

  • Firestone, B. A., & Siegel, R. A. (1991). Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J. Appl. Polym. Sci., 43, 901–914.

    CAS  Google Scholar 

  • Haensler, J., & Szoka, F. C. (1993). Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem., 4, 372–379.

    CAS  PubMed  Google Scholar 

  • De las Heras Alarcón, C., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev., 34, 276–285.

    PubMed  Google Scholar 

  • Gan, D. J., & Lyon, L. A. (2001). Tunable swelling kinetics in core-shell hydrogel nanoparticles. J. Am. Chem. Soc., 123, 7511–7517.

    CAS  PubMed  Google Scholar 

  • Gao, C. Y., Moya, S., Lichtenfeld, H., Casoli, A., Fiedler, H., Donath, E., & Möhwald, H. (2001). The decomposition process of melamine formaldehyde cores: The key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol. Mater. Eng., 286, 355–361.

    CAS  Google Scholar 

  • Gao, C., Leporatti, S., Moya, S., Donath, E., & Möhwald, H. (2003). Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. Chem.-Eur. J, 9, 915–920.

    CAS  Google Scholar 

  • Germain, M., Balaguer, P., Nicolas, J.-C., Lopez, F., Esteve, J.-P., Sukhorukov, G. B., Winterhalter, M., Richard-Foy, H., & Fournier, D. (2006). Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens. and Bioelectron., 21, 1566–1573.

    CAS  Google Scholar 

  • Gilbert, J., Richardson, J. L. Davies, M. C., Pallin, K. J., & Hadgraft, J. (1987). The effect of solutes and polymers on the gelation properties of Pluronic F-127 solution for controlled drug delivery. J. Controlled Release, 5, 113–118.

    CAS  Google Scholar 

  • Gillies, E. R., Jonsson, T. B., & Fréchet, J. M. J. (2004). Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126, 11936–11943.

    CAS  PubMed  Google Scholar 

  • Gillies, E. R., & Fréchet, J. M. J. (2005). Dendrimers and dendritic polymers in drug delivery, Drug Delivery Today, 10, 35–43.

    CAS  Google Scholar 

  • Gittins, D., & Caruso, F. (2001). Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed., 40, 3001–3004.

    CAS  Google Scholar 

  • Graham, N. B., & Cameron, A. (1998). Nanogels and microgels: The new polymeric materials playground.  Pure Appl. Chem., 70, 1271–1275.

    CAS  Google Scholar 

  • Gref, R., Minaniitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanosphere. Science, 263, 1600–1603.

    CAS  PubMed  Google Scholar 

  • Guo, A., Liu, G., & Tao, J. (1996). Star polymers and nanospheres from cross-linkable diblock copolymers, Macromolecules, 29, 2487–2493.

    CAS  Google Scholar 

  • Gupta, P., Vermani, K., & Garg, S. (2002). Hydrogels: from controlled release to pH-responsive drug delivery. Drug Disc. Today, 7, 569–579.

    CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments, Macromolecules, 28, 5294–5299.

    CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (1999). Chain length recognition: core–shell supramolecular assembly from oppositely charged block copolymers. Science, 283, 65–67.

    CAS  PubMed  Google Scholar 

  • Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 54, 13–36.

    CAS  PubMed  Google Scholar 

  • Hirayama, F., & Uekama, K. (1999). Cyclodextrin-based controlled drug release system. Adv. Drug Del. Rev., 36, 125–141.

    CAS  Google Scholar 

  • Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J., & West, J. L. (2003). A whole blood immunoassay using gold nanoshells. Anal. Chem, 75, 2377– 2381.

    CAS  PubMed  Google Scholar 

  • Ibarz, G., Dähne, L., Donath, E., & Möhwald, H. (2002). Controlled permeability of polyelectrolyte capsules via defined annealing. Chem. Mater., 14, 4059–4062.

    CAS  Google Scholar 

  • Itoh, Y., Matsusaki, M., Kida, T., & Akashi, M. (2006). Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules. Biomacromol., 7, 2715–2718.

    CAS  Google Scholar 

  • Izumrudov, V. A., Ortiz, H. O., Zezin, A. B., & Kabanov, V. A. (1998). Temperature controllable interpolyelectrolyte substitution reactions. Macromol. Chem. Phys., 199, 1057– 1062.

    CAS  Google Scholar 

  • Jansen, J. F. G. A., Debraban der Vandenberg, E. M. M., & Meijer, E. W. (1994). Encapsulation of guest molecules into a dendritic box. Science, 266, 1226–1229.

    CAS  PubMed  Google Scholar 

  • Jansen, J. F. G. A., Meijer, E. W., & Debraban der Vandenberg, E. M. M. (1995). The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc., 117, 4417–4418.

    CAS  Google Scholar 

  • Jiang, C. Y., & Tsukruk, V. V. (2006). Freestanding nanostructures via layer-by-layer assembly. Adv. Mater., 18, 829–840.

    CAS  Google Scholar 

  • Kabanov, A. V., Chekhonln, V. P., Alakhov, V. Y., Batrakova, E. V., Lebedev, A. S., Melik- Nubarov, N. S., Arzhakov S. A., Levashov, A. V., Morozov, G. V., Severin, E. S., & Kabanov, V. A. (1989). The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles Micelles as microcontainers for drug targeting, FEBS Lett., 258, 343–345.

    CAS  PubMed  Google Scholar 

  • Kai, E., Sawata, S., Ikebukuro, K., Iida, T., Honda, T., & Karube, I. (1999). Detection of PCR products in solution using surface plasmon resonance. Anal. Chem., 71, 796–800.

    CAS  PubMed  Google Scholar 

  • Kamath, K., & Park, K. (1993). Biodegradable hydrogels in drug delivery, Adv. Drug Del. Rev., 11, 59–84.

    CAS  Google Scholar 

  • Kataoka, K., Ishihara, A., Harada, A., & Miyazaki, H. (1998). Effect of secondary structure of poly(L-lysine) segments on the micellization of poly(ethylene glycol)–poly(L-lysine) block copolymer partially substituted with hydrocinnamoyl-group at the N -position in aqueous milieu. Macromolecules, 31, 6071–6076.

    CAS  Google Scholar 

  • Kataoka, K., Harada, A., & Nagasaki, Y. (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Del. Rev., 47, 113–131.

    CAS  Google Scholar 

  • Kikuchi, A., & Okano, T. (2002). Pulsatile drug release control using hydrogels, Adv. Drug Del. Rev., 54, 53–77.

    CAS  Google Scholar 

  • Köhler, K., Shchukin, D. G., Möhwald, H., & Sukhorukov, G. B. (2005). Thermal behaviour of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. J. Phys. Chem. B, 109, 18250–18259.

    PubMed  Google Scholar 

  • Kreft, O., Georgieva, R., Bäumler, H., Steup, M., Müller-Röber, B., Sukhorukov, G. B., & Möhwald, H. (2006) Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins. Macromol. Rapid Commun., 27, 435–440.

    CAS  Google Scholar 

  • Kreft, O., Muñoz Javier, A., Sukhorukov, G. B. & Parak, W. J. (2007). Polymer Microcapsules as Mobile Local pH-sensors. J. Materials Chemistry. 17, 4471–4476.

    Google Scholar 

  • Kreibig, U., Schmitz, B., & Breuer, H. D. (1987). Separation of plasmon-polariton modes of small metal particles. Phys. Rev. B, 36, 5027–5030.

    Google Scholar 

  • Kügler, R., Schmitt, J., & Knoll, W. (2002). The swelling behavior of polyelectrolyte multilayers in air of different relative humidity and in water. Macromol. Chem. Phys., 203, 413–419.

    Google Scholar 

  • Kwoh, D. Y., Coffin, C. C., Lollo, C. P., Jovenal, J., Banaszczyk, M. G., Mullen, P., Phillips, A., Amini, A., Fabrycki, J., Bartholomew, R. M., Brostoff, S. W., & Carlo, D. J. (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta, 1444, 171–190.

    CAS  PubMed  Google Scholar 

  • Lebedew, P. (1901) Testings on the compressive force of light. Ann. der Phys., 6, 433–458.

    CAS  Google Scholar 

  • Leporatti, S., Gao, C., Voigt, A., Donath, E., & Möhwald, H. (2001). Shrinking of ultrathin polyelectrolyte multilayer capsules upon annealing: A confocal laser scanning microscopy and scanning force microscopy study. Eur.Phys. J. E, 5, 13–20.

    CAS  Google Scholar 

  • Liu, S. Y., & Armes, S. P. (2002). Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem. Int. Ed., 41, 1413–1416.

    CAS  Google Scholar 

  • Lowman, A. M., & Peppas, N. A. (1999). Hydrogels. In Encyclopaedia of Controlled Drug Delivery (Mathiowitz, E., ed.), pp. 397–418, John Wiley & Sons.

    Google Scholar 

  • Lvov, Y., Antipov, A. A., Mamedov, A., Möhwald, H., & Sukhorukov, G. B. (2001). Urease encapsulation in nanoorganized microshells. Nano Lett., 1, 125–128.

    CAS  Google Scholar 

  • Lu, Z., Prouty, M. D., Guo, Z., Golub, V. O., Kumar, C. S. S. R., & Lvov, Y. M. (2005). Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir, 21, 2042–2050.

    CAS  PubMed  Google Scholar 

  • Lulevich, V. V., Nordschild, S., & Vinogradova, O. I. (2004). Investigation of molecular weight and aging effect on the stiffness of polyelectrolyte multilayer microcapsules. Macromolecules, 37, 7736–7741.

    CAS  Google Scholar 

  • Ma, Y., Dong, W.-F., Hempenius, M. A., Möhwald, H., & Vancso, G. J. (2006). Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater., 5, 724–729.

    CAS  PubMed  Google Scholar 

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release, 65, 271–284.

    CAS  Google Scholar 

  • Mansur, C. R. E., Barboza, S. P., González, G., & Lucas, E. F. (2004). Pluronic×tetronic polyols: Study of their properties and performance in the destabilization of emulsions formed in the petroleum industry, J. Col. Int. Sci., 271, 232–240.

    CAS  Google Scholar 

  • Mart, R. J., Osborne, R. D., Stevens, M. M., & Ulijn, R. V. Peptide-based stimuli-responsive biomaterials  (2006). Soft Matter, 2, 822–835.

    CAS  Google Scholar 

  • Mayer, C. (2005). Nanocapsules as drug delivery systems. Int. J. Artif Organs., 28, 1163–1171.

    CAS  PubMed  Google Scholar 

  • Mauser, T., Dejugnat, C., & Sukhorukov, G. B. (2006). Balance of hydrophobic and electrostatic forces in the pH response of weak polyelectrolyte capsules. J. Phys. Chem. B, 110, 20246–20253.

    CAS  PubMed  Google Scholar 

  • Moffitt, M., Khougaz, K., & Eisenberg, A. (1996). Micellization of ionic block copolymers. Acc. Chem. Res., 29, 95–102.

    CAS  Google Scholar 

  • Möhwald, H., Donath. E., & Sukhorukov, G. B. in Multilayer Thin Films, Wiley-VCH, New York, 2003, pp 363–392.

    Google Scholar 

  • Moya, S., Dähne, L., Voigt, A., Leporatti, S., Donath, E., & Möhwald, H. (2001). Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry. Colloids Surf. A, 183, 27– 40.

    Google Scholar 

  • Müller, R., Köhler, K., Weinkamer, R., Sukhorukov, G., & Fery, A. (2005). Melting of PDADMAC/PSS capsules investigated with AFM force spectroscopy. Macromol., 38, 9766–9771.

    Google Scholar 

  • Murata, M., Kaku, W., Anada, T., Sato, Y., Kano, T., Maeda, M., & Katayama, Y. (2003) Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett., 13, 3967–3970.

    CAS  PubMed  Google Scholar 

  • Niemeyer, C. M., & Ceyhan, B. (2001). DNA-directed functionalization of colloidal Gold with proteins. Angew. Chem, Int. Ed., 40, 3685–3688.

    CAS  Google Scholar 

  • Nishiyama, N., Yokoyama, M., Aoyagi, T., Okano, T., Sakurai, Y., & Kataoka K. (1999). Preparation and characterization of self-assembled polymer–metal complex micelle from cis-dichlorodiamine platinum (II) and poly(ethylene glycol)– poly(a,b-aspartic acid) block copolymer in an aqueous medium. Langmuir, 15, 377–383.

    CAS  Google Scholar 

  • Nori, A., & Kopecek, J. (2005). Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Delivery Rev., 57, 609–639.

    CAS  Google Scholar 

  • Norman, T., Jr., Grant, C. D., Magana, D., Zhang, J. Z., Liu, J., Cao, D., Bridges, F., & van Buuren, A. (2002). Near infrared optical absorption of gold nanoparticle aggregates. J. Phys. Chem. B, 106, 7005–7012.

    CAS  Google Scholar 

  • Ooya, T., Choi, H. S., Yamashita, A., Yui, N., Sugaya, Y., Kano, A., Maruyama, A., Akita, H., Ito, R., Kogure, K., & Harashima, H. (2005). Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery, J. Am. Chem. Soc., 128, 3852–3853.

    Google Scholar 

  • Oupicky, D., Bisht, H. S., Manickam, D. S., & Zhou, Q. (2005). Stimulus-controlled delivery of drugs and genes, Expert Opin Drug Delivery, 2, 1–13.

    Google Scholar 

  • Park, M. K., Xia, C. J., Advincula, R. C., Schotz, P., & Caruso, F. (2001). Cross-linked, luminescent spherical colloidal and hollow-shell particles. Langmuir, 17, 7670–7674.

    CAS  Google Scholar 

  • Pelton, R. (2000) Temperature-sensitive aqueous hydrogels. Adv. Col. Int. Sci. 85(1), 1–33.

    CAS  Google Scholar 

  • Petrov, A. I., Volodkin, D. V., & Sukhorukov, G. B. (2005). Protein-calcium carbonate coprecipitation: A tool for protein encapsulation. Biotechnol. Prog., 21, 918–925.

    CAS  PubMed  Google Scholar 

  • Peyratout, C. S., & Dähne, L. (2004). Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew. Chem. Int. Ed., 43, 3762–3783.

    CAS  Google Scholar 

  • Picart, C., Schneider, A., Etienne, O., Mutterer, J., Schaaf, P., Egles, C., Jessen, N., & Voegel, J.-C. (2005). Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv. Funct. Mat., 15, 1771–1780.

    CAS  Google Scholar 

  • Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53, 321–339.

    CAS  PubMed  Google Scholar 

  • Radt, B., Smith, T. A., & Caruso, F. (2004). Optically addressable nanostructured capsules. Adv. Mater., 16, 2184–2189.

    CAS  Google Scholar 

  • Roggan, A., Friebel, M., Dorschel, K., Hahn, A., & Muller, G. (1999). Optical properties of circulating human blood in the wavelength range 400–2500 NM. J. Biomed. Opt., 4, 36–46.

    Google Scholar 

  • Saunders, B. R., Crowther, H. M., Morris, G. E., Mears, S. J., Cosgrove, T., & Vincent, B. (1999) Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles. Coll. Surf. A 149 (1–3), 57–64.

    CAS  Google Scholar 

  • Schild, H. G. (1992). Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci., 17, 163–249.

    CAS  Google Scholar 

  • Schneider, G., & Decher, G. (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres, Nano Lett., 4, 1833

    CAS  Google Scholar 

  • Shchukin, D. G., Gorin, D. A., & Möhwald, H. (2006). Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir, 22, 7400–7404.

    CAS  PubMed  Google Scholar 

  • Shchukin, D. G., Köhler, K., & Möhwald, H. (2006). Microcontainers with electrochemically reversible permeability. J. Am. Chem. Soc., 128, 4560–4461.

    CAS  PubMed  Google Scholar 

  • Shenoy, D. B., Antipov, A. A., Sukhorukov, G. B., & Möhwald, H. (2003). Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromol., 4, 265–272.

    CAS  Google Scholar 

  • Shipway, A., Katz, E., & Wilner I. (2000). Nanoparticle arrays on surface for electronic, optical and sensor applications. Chemphyschem, 1, 18–52.

    CAS  Google Scholar 

  • Skirtach ,A. G., Antipov, A. A., Shchukin, D. G., & Sukhorukov, G. B.(2004). Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir, 20, 6988–6992.

    CAS  PubMed  Google Scholar 

  • Skirtach, A. G., Dejugnat, C., Braun, D., Susha, A. S., Rogach, A. L., Parak, W. J., Möhwald, H., & Sukhorukov, G. B. (2005). The role of metal nanoparticles in remote release of encapsulated materials. Nano. Lett., 5, 1371–1377.

    CAS  PubMed  Google Scholar 

  • Skirtach, A. G. , Munoz Javier, A., Kreft, O., Karen Köhler, Piera Alberola, A., Möhwald, H., Parak, W. J., & Sukhorukov, G. B. (2006). Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed., 45, 4612–4617.

    CAS  Google Scholar 

  • Skirtach, A. G., Déjugnat, C., Braun, D., Susha, A. S., Rogach, A. L., & Sukhorukov G. B. (2007a). Nanoparticles distribution control by polymers: Aggregates versus non-aggregates. J. Phys. Chem. C, 111, 555–564.

    CAS  Google Scholar 

  • Skirtach, A. G., De Geest, B. G., Mamedov, A., Antipov, A. A., Kotov, N. A., & Sukhorukov, G. B. (2007b). Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. J. Mat. Chem., 17, (1050–1054).

    Google Scholar 

  • Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G. H., Harris, J. M., & Hoffman, A. S. (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature, 378, 472–474.

    CAS  PubMed  Google Scholar 

  • Steitz, R., Leiner, V., Tauer, K., Khrenov, V., & von Klitzing, R. (2002). Temperature-induced changes in polyelectrolyte films at the solid-liquid interface. Appl. Phys. A: Mater. Sci. Process., 74, S519–S521.

    CAS  Google Scholar 

  • Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers .4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 30, 2717–2725.

    CAS  Google Scholar 

  • Sui, Z. J., & Schlenoff, J. B. (2004). Phase separations in pH-responsive polyelectrolyte multilayers: Charge extrusion versus charge expulsion. Langmuir, 20, 6026–6031.

    CAS  PubMed  Google Scholar 

  • Sukhishvili, S. A. (2005). Responsive polymer films and capsules via layer-by-layer assembly. Curr. Opin. Coll. Int. Sci, 10, 37–44.

    CAS  Google Scholar 

  • Sukhishvili, S. A., & Granick, S. (2000). Layered, erasable, ultrathin polymer films. J. Am. Chem. Soc., 122, 9550–9551.

    CAS  Google Scholar 

  • Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., & Möhwald, H. (1998). Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym. Adv. Technol., 9, 759–767.

    CAS  Google Scholar 

  • Sukhorukov, G. B., Volodkin,D. V., Günther, A., Petrov, A. I., Shenoy, D. B., & Möhwald, H. (2004). Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds, J. Mater. Chem., 14, 2073–2081.

    CAS  Google Scholar 

  • Suzuki, Y., Tomonaga, K., Kumazaki, M., & Nishio, I. (1996). Change in phase transition behavior of an NIPA gel induced by solvent composition: hydrophobic effect, Polym. Gels Netw., 4, 129–142.

    CAS  Google Scholar 

  • Thies, C. A. (1999) A short history of microencapsulation technology. In R. Arshady (Ed.), Microspheres, microcapsules and liposomes. Vol. I: Preparation and chemical application, London: Citus Books.

    Google Scholar 

  • Thurmond, K. B., Kowalewski, T., & Wooley, K. L. (1996). Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles, J. Am. Chem. Soc., 118, 7239–7240.

    CAS  Google Scholar 

  • Tonnesen, H. H., & Karlsen J. (2002). Alginate in drug delivery systems. Drug Dev Ind Pharm., 28, 621–630.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 61, 2549–2559.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P., Trubetskoy, V. S., Whiteman, K. R., Caliceti, P., Ferruti, P., & Veronese F. M. (1995). New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci., 84, 1049–1053.

    CAS  PubMed  Google Scholar 

  • Tuzar, Z., & Kratochvil, P. (1976). Block and graft copolymer micelles in solution. Adv. Col. Int. Sci., 6, 201–232.

    CAS  Google Scholar 

  • Unger, E. ”Drug and gene delivery with ultrasound contrast agents”, in The Leading Edge in Diagnostic Ultrasound, Atlantic City, NJ: May 13–16, 1997.

    Google Scholar 

  • Verberg, R., Alexeev, A., & Balazs, A. C. (2006). Modeling the release of nanoparticles from mobile microcapsules. J. Chem. Phys., 125, 224712–224722.

    PubMed  Google Scholar 

  • Voigt, A., Lichtenfeld, H., Sukhorukov, G. B., Zastrow, H., Donath, E., Pumler, H. B., & Möhwald, H. (1999). Membrane filtration for microencapsulation and microcapsules fabrication by layer-by-layer polyelectrolyte adsorption. Ind. Eng. Chem. Res., 38, 4037–4043.

    CAS  Google Scholar 

  • Volodkin, D. V., Larionova, N. I., & Sukhorukov, G. B. (2004). Protein encapsulation via porous CaCO3 microparticles templating, Biomacromol. 5, 1962–1972.

    CAS  Google Scholar 

  • Williams, D. F. (1999). The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press.

    Google Scholar 

  • Wolff, J. A. (2002). The 'grand' problem of synthetic delivery, Nat. Biotechnol., 20, 768–769.

    CAS  PubMed  Google Scholar 

  • Wu, J. Z., Zhou, B., & Hu, Z. B. (2003). Phase behavior of thermally responsive microgel colloids. Phys. Rev. Lett., 90, 48304.

    Google Scholar 

  • Yokoyama, M., Okano, T., & Kataoka, K. (1994). Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J. Controlled Release, 32, 269–277.

    CAS  Google Scholar 

  • Yoo, M. K., Seok, W. K., & Sung, Y. K. (2004). Characterisation of stimuli-sensitive polymers for biomedical applications, Macromol. Symp., 207, 173–186.

    CAS  Google Scholar 

  • Yu, H., & Grainger, D. W. (1993). Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: cationic, anionic, and ampholytic hydrogels, J. Appl. Polym. Sci., 49, 1553–1563.

    CAS  Google Scholar 

  • Zhou, H. S., Honma, I., Komiyama, H., & Haus, J. W. (1994). Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B, 50, 12052–12056.

    Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Helmuth Möhwald for critical reading of the manuscript and support during research; we also thank Dr. D. G. Shchukin and Prof. G. B. Sukhorukov for helpful discussions. We thank Dr. B. G. De Geest and K. Köhler for assistance in text and illustration preparations. The support by EU FP-6 programs (“SELECTNANO” and “NANOCAPS”) as well as Volkswagen-Foundation is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Skirtach, A.G., Kreft, O. (2009). Stimuli-Sensitive Nanotechnology for Drug Delivery. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_18

Download citation

Publish with us

Policies and ethics