Skip to main content

Unsupervised Clustering and Learning

  • 3178 Accesses

Abstract

In Chapter 10 we discussed parameter estimation and model selection. In this chapter, we will review different techniques for partitioning the total sample space

Keywords

  • Unsupervised Cluster
  • Speaker Recognition
  • High Order Statistic
  • Basic Cluster Technique
  • Expectation Maximization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77592-0_11
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-0-387-77592-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoon Beigi .

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beigi, H. (2011). Unsupervised Clustering and Learning. In: Fundamentals of Speaker Recognition. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77592-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77592-0_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77591-3

  • Online ISBN: 978-0-387-77592-0

  • eBook Packages: Computer ScienceComputer Science (R0)