Melanoma and Nonmelanoma Skin Cancers and the Immune System

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 624)


A connection between tumorigenesis and the immune system has been known to exist since the late 1960s. Two pioneers in this concept were Lewis Thomas and F. Macfarlane Burnett. In 1967 Burnett introduced the concept of immunosurveillance.1 This idea is based on the concept that an intact immune system actively recognizes and rids the body of tumor cells.2,3 This concept raises several questions. If the body is indeed able to eliminate transformed cells, why do some survive, proliferate and even metastisize? Does neoplastic growth result from a breakdown on the part of the immune system or a coup on the part of the tumor cells? What circumstances lead to spontaneous regression vs. metastatic malignancy? Furthermore, if tumor cells originate from cells that were previously seen as “self” what is the significance of autoimmunity and regulation of these “surveillance” mechanisms?


Dendritic Cell Mast Cell Melanoma Cell Skin Cancer Basal Cell Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burnet M. Concepts of autoimmune disease and their implications for therapy. Perspect Biol Med 1967 Winter; 10(2):141–151.PubMedGoogle Scholar
  2. 2.
    Pardoll DM. Immunology. Stress, NK receptors and immune surveillance. Science 2001; 294(5542):534–536.PubMedCrossRefGoogle Scholar
  3. 3.
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoedit-ing. Immunity 2004; 21(2):137–148.PubMedCrossRefGoogle Scholar
  4. 4.
    Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21:807–839.PubMedCrossRefGoogle Scholar
  5. 5.
    Nagai H, Horikawa T, Hara I et al. In vivo elimination of CD25+ regulatory T-cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 2004; 13(10):613–620.PubMedCrossRefGoogle Scholar
  6. 6.
    Han J, Colditz GA, Hunter DJ. Risk factors for skin cancers: a nested case-control study within the Nurses’ Health Study. Int J Epidemiol 2006.Google Scholar
  7. 7.
    Veness MJ. Defining patients with high-risk cutaneous squamous cell carcinoma. Australas J Dermatol 2006; 47(1):28–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Jemec GB, Holm EA. Nonmelanoma skin cancer in organ transplant patients. Transplantation 2003; 75(3):253–257.PubMedCrossRefGoogle Scholar
  9. 9.
    Nguyen TH, Ho DQ. Nonmelanoma skin cancer. Curr Treat Options Oncol 2002; 3(3):193–203.PubMedCrossRefGoogle Scholar
  10. 10.
    Le Mire L, Hollowood K, Gray D et al. Melanomas in renal transplant recipients. Br J Dermatol 2006; 154(3):472–477.PubMedCrossRefGoogle Scholar
  11. 11.
    Euvrard S, Kanitakis J, Deadlier E et al. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation 2006; 81(8):1093–1100.PubMedCrossRefGoogle Scholar
  12. 12.
    Boyle J, MacKie RM, Briggs JD et al. Cancer, warts and sunshine in renal transplant patients. A case-control study. Lancet 1984; 1(8379):702–705.PubMedCrossRefGoogle Scholar
  13. 13.
    Tiu J, Li H, Rassekh C et al. Molecular basis of posttransplant squamous cell carcinoma: the potential role of cyclosporine a in carcinogenesis. Laryngoscope 2006; 116(5):762–769.PubMedCrossRefGoogle Scholar
  14. 14.
    Yarosh DB, Pena AV, Nay SLV et al. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol 2005; 125(5):1020–1025.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Donovan P, Perrett CM, Zhang X et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005; 309(5742):1871–1874.PubMedCrossRefGoogle Scholar
  16. 16.
    Ramsay HM, Fryer AA, Reece S et al. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. Am J Kidney Dis 2000; 36(1):167–176.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilkins K, Turner R, Dolev JC et al. Cutaneous malignancy and human immunodeficiency virus disease. J Am Acad Dermatol 2006; 54(2):189–206, quiz 207–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Nguyen P, Vin-Christian K, Ming ME et al. Aggressive squamous cell carcinomas in persons infected with the human immunodeficiency virus. Arch Dermatol 2002; 138(6):758–763.PubMedCrossRefGoogle Scholar
  19. 19.
    Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001; 63(1–3):8–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Mclnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res 2005; 571(1–2):91–106.Google Scholar
  21. 21.
    Yarosh DB. DNA repair, immunosuppression and skin cancer. Cutis 2004; 74(5 Suppl):10–13.PubMedGoogle Scholar
  22. 22.
    Hattori Y, Nishigori C, Tanaka T et al. 8-hydroxy-2’-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J Invest Dermatol 1996; 107(5):733–737.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang X, Wu RS, Fu W et al. Production of reactive oxygen species and 8-hydroxy-2’deoxyguanosine in KB cells co-exposed to benzo [a]pyrene and UV-A radiation. Chemosphere 2004; 55(10):1303–1308.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwarz T. Mechanisms of UV-induced immunosuppression. Keio J Med 2005; 54(4):165–171.PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper KD. Cell-mediated immunosuppressive mechanisms induced by UV radiation. Photochem Photobiol 1996; 63(4):400–406.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoshikawa T, Rae V, Bruins-Slot W et al. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol 1990; 95(5):530–536.PubMedCrossRefGoogle Scholar
  27. 27.
    Streilein JW, Taylor JR, Vincek V et al. Relationship between ultraviolet radiation-induced immunosuppression and carcinogenesis. J Invest Dermatol 1994; 103(5 Suppl):107S–111S.PubMedCrossRefGoogle Scholar
  28. 28.
    Rivas JM, Ullrich SE. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol 1992; 149(12):3865–3871.PubMedGoogle Scholar
  29. 29.
    Nghiem DX, Kazimi N, Mitchell DL et al. Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. J Invest Dermatol 2002; 119(3):600–608.PubMedCrossRefGoogle Scholar
  30. 30.
    Noonan FP, De Fabo EC, Kripke ML. Suppression of contact hypersensitivity by UV radiation and its relationship to UV-induced suppression of tumor immunity. Photochem Photobiol 1981; 34(6):683–689.PubMedGoogle Scholar
  31. 31.
    Mueller MM. Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer 2006; 42(6):735–744.PubMedCrossRefGoogle Scholar
  32. 32.
    Shellman YG, Makela M, Norris DA. Induction of secreted matrix metalloproteinase-9 activity in human melanoma cells by extracellular matrix proteins and cytokines. Melanoma Res 2006; 16(3):207–211.PubMedCrossRefGoogle Scholar
  33. 33.
    Ozawa H, Aiba S, Nakagawa et al. Interferon-gamma and interleukin-10 inhibit antigen presentation by Langerhans cells for T helper type 1 cells by suppressing their CD80 (B7-1) expression. Eur J Immunol 1996; 26(3):648–652.PubMedCrossRefGoogle Scholar
  34. 34.
    Hill IX, Shreedhar VK, Kripke ML et al. A critical role for Fas ligand in the active suppression of systemic immune responses by ultraviolet radiation. J Exp Med 1999; 189(8):1285–1294.PubMedCrossRefGoogle Scholar
  35. 35.
    Toews GB, Bergstresser PR, Streilein JW. Langerhans cells: sentinels of skin associated lymphoid tissue. J Invest Dermatol 1980; 75(1):78–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Simon JC, Cruz PD, Jr, Bergstresser PR et al. Low dose ultraviolet B-irradiated Langerhans cells preferentially activate CD4+ cells of the T helper 2 subset. J Immunol 1990; 145(7):2087–2091.PubMedGoogle Scholar
  37. 37.
    Araneo BA, Dowell T, Moon HB et al. Regulation of murine lymphokine production in vivo. Ultraviolet radiation exposure depresses IL-2 and enhances IL-4 production by T-cells through an IL-1-dependent mechanism. J Immunol 1989; 143(6):1737–1744.PubMedGoogle Scholar
  38. 38.
    Beissert S, Ruhlemann D, Mohammad T et al. IL-12 prevents the inhibitory effects of cis-urocanic acid on tumor antigen presentation by Langerhans cells: implications for photocarcinogenesis. J Immunol 2001; 167(11):6232–6238.PubMedGoogle Scholar
  39. 39.
    Hart PH, Jaksic A, Swift G et al. Histamine involvement in UVB-and cis-urocanic acid-induced systemic suppression of contact hypersensitivity responses. Immunology 1997; 91(4):601–608.PubMedCrossRefGoogle Scholar
  40. 40.
    Hart PH, Grimbaldeston MA, Swift GJ et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 1998; 187(12):2045–2053.PubMedCrossRefGoogle Scholar
  41. 41.
    Khalil Z, Townley SL, Grimbaldeston MA et al. cis-Urocanic acid stimulates neuropeptide release from peripheral sensory nerves. J Invest Dermatol 2001; 117(4):886–891.PubMedCrossRefGoogle Scholar
  42. 42.
    Grimbaldeston MA, Skov L, Finlay-Jones JJ et al. Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans. Methods 2002; 28(1):90–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Piccinni MP, Maggi E, Romagnani S. Environmental factors favoring the allergen-specific Th2 response in allergic subjects. Ann NY Acad Sci 2000; 917:844–852.PubMedCrossRefGoogle Scholar
  44. 44.
    Kameyoshi Y, Morita E, Tanaka T et al. Interleukin-1 alpha enhances mast cell growth by a fibroblast-de-pendent mechanism. Arch Dermatol Res 2000; 292(5):240–247.PubMedCrossRefGoogle Scholar
  45. 45.
    Grimbaldeston MA, Skov L, Baadsgaard O et al. Communications: high dermal mast cell prevalence is a predisposing factor for basal cell carcinoma in humans. J Invest Dermatol 2000; 115(2):317–320.PubMedCrossRefGoogle Scholar
  46. 46.
    Ziegler A, Leffell DJ, Kunala S et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 1993; 90(9):4216–4220.PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarz T. Mechanisms of UV-induced immunosuppression. Link between UV-induced tolerance and apoptosis. Eur J Dermatol 1998; 8(3):196–197.PubMedGoogle Scholar
  48. 48.
    Byrne SN, Spinks N, Halliday GM. The induction of immunity to a protein antigen using an adjuvant is significantly compromised by ultraviolet A radiation. J Photochem Photobiol B 2006; 84(2):128–134.PubMedCrossRefGoogle Scholar
  49. 49.
    Schiller M, Metze D, Luger TA et al. Immune response modifiers-mode of action. Exp Dermatol 2006; 15(5):331–341.PubMedCrossRefGoogle Scholar
  50. 50.
    Hung K, Hayashi R, Lafond-Walker A et al. The central role of CD4(+) T-cells in the antitumor immune response. J Exp Med 1998; 188(12):2357–2368.PubMedCrossRefGoogle Scholar
  51. 51.
    Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 2007; 170(2):774–786.PubMedCrossRefGoogle Scholar
  52. 52.
    Poland A, Palen D, Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 1982; 300(5889):271–273.PubMedCrossRefGoogle Scholar
  53. 53.
    Guiducci C, Valzasina B, Dislich H et al. CD40/CD40L interaction regulates CD4+ CD25+ T-reg homeostasis through dendritic cell-produced IL-2. Eur J Immunol 2005; 35(2):557–567.PubMedCrossRefGoogle Scholar
  54. 54.
    Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.PubMedCrossRefGoogle Scholar
  55. 55.
    Mueller MM. Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer 2006; 42(6):735–744.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang T, Niu G, Kortylewski M et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10(1):48–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Farnoush A, Mackenzie IC. Sequential histological changes and mast cell response in skin during chemically-induced carcinogenesis. J Oral Pathol 1983; 12(4):300–306.PubMedCrossRefGoogle Scholar
  58. 58.
    Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol 1996; 3(11):895–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Coussens LM, Tinkle CL, Hanahan D et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103(3):481–490.PubMedCrossRefGoogle Scholar
  60. 60.
    Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47:187–376.PubMedCrossRefGoogle Scholar
  61. 61.
    Smyth MJ, Thia KY, Cretney E et al. Perforin is a major contributor to NK-cell control of tumor metastasis. J Immunol 1999; 162(11):6658–6662.PubMedGoogle Scholar
  62. 62.
    Hayakawa Y, Kelly JM, Westwood JA et al. Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol 2002; 169(10):5377–5381.PubMedGoogle Scholar
  63. 63.
    Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2(4):293–299.PubMedCrossRefGoogle Scholar
  64. 64.
    Paul P, Rouas-Freiss N, Khalil-Daher I et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci USA 1998; 95(8):4510–4515.PubMedCrossRefGoogle Scholar
  65. 65.
    Caux C, Massacrier C, Dezutter-Dambuyant C et al. Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T-cells and process soluble antigen. J Immunol 1995; 155(11):5427–5435.PubMedGoogle Scholar
  66. 66.
    Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282(5736):324–326.PubMedCrossRefGoogle Scholar
  67. 67.
    O’Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104(8):2235–2246.PubMedCrossRefGoogle Scholar
  68. 68.
    Kripke ML. Effects of UV radiation on tumor immunity. J Natl Cancer Inst 1990; 82(17):1392–1396.PubMedCrossRefGoogle Scholar
  69. 69.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392(6673):245–252.PubMedCrossRefGoogle Scholar
  70. 70.
    Figdor CG, de Vries IJ, Lesterhuis WJ et al. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10(5):475–480.PubMedCrossRefGoogle Scholar
  71. 71.
    Stene MA, Babajanians M, Bhuta S et al. Quantitative alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol 1988; 91(2):125–128.PubMedCrossRefGoogle Scholar
  72. 72.
    Ladanyi A, Kiss J, Somlai B et al. Density of DC-LAMP(+) mature dendritic cells in combination with activated T-lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 2007.Google Scholar
  73. 73.
    Mellor AL, Keskin DB, Johnson T et al. Cells expressing indoleamine 2,3-dioxygenase inhibit T-cell responses. J Immunol 2002; 168(8):3771–3776.PubMedGoogle Scholar
  74. 74.
    Munn DH, Zhou M, Attwood JT et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281(5380):1191–1193.PubMedCrossRefGoogle Scholar
  75. 75.
    Munn DH, Shafizadeh E, Attwood JT et al. Inhibition of T-cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189(9):1363–1372.PubMedCrossRefGoogle Scholar
  76. 76.
    Munn DH, Sharma MD, Lee JR et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297(5588):1867–1870.PubMedCrossRefGoogle Scholar
  77. 77.
    van Oijen M, Bins A, Elias S et al. On the role of melanoma-specific CD8+ T-cell immunity in disease progression of advanced-stage melanoma patients. Clin Cancer Res 2004; 10(14):4754–4760.PubMedCrossRefGoogle Scholar
  78. 78.
    Boczkowski D, Nair SK, Nam JH et al. Induction of tumor immunity and cytotoxic T-lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000; 60(4):1028–1034.PubMedGoogle Scholar
  79. 79.
    Anichini A, Mortarini R, Maccalli C et al. Cytotoxic T-cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol 1996; 156(1):208–217.PubMedGoogle Scholar
  80. 80.
    Griffioen M, Kessler JH, Borghi M et al. Detection and functional analysis of CD8+ T-cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res 2006; 12(10):3130–3136.PubMedCrossRefGoogle Scholar
  81. 81.
    McWilliams JA, McGurran SM, Dow SW et al. A modified tyrosinase-related protein 2 epitope generates high-affinity tumor-specific T-cells but does not mediate therapeutic efficacy in an intradermal tumor model. J Immunol 2006; 177(1):155–161.PubMedGoogle Scholar
  82. 82.
    Bennink JR anderson R, Bacik I et al. Antigen processing: where tumor-specific T-cell responses begin. J Immunother 1993; 14(3):202–208.CrossRefGoogle Scholar
  83. 83.
    Konjevic G, Mirjacic Martinovic K, Vuletic A et al. Low expression of CD 161 and NKG2D activating NK receptor is associated with impaired NK-cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 2007.Google Scholar
  84. 84.
    Lee TH, Cho YH, Lee MG. Larger numbers of immature dendritic cells augment an antitumor effect against established murine melanoma cells. Biotechnol Lett 2007; 29(3):351–357.PubMedCrossRefGoogle Scholar
  85. 85.
    Brunda MJ, Gately MK. Antitumor activity of interleukin-12. Clin Immunol Immunopathol 1994; 71(3):253–255.PubMedCrossRefGoogle Scholar
  86. 86.
    Nghiem DX, Kazimi N, Mitchell DL et al. Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. J Invest Dermatol 2002; 119(3):600–608.PubMedCrossRefGoogle Scholar
  87. 87.
    Brunda MJ, Luistro L, Warrier RR et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178(4):1223–1230.PubMedCrossRefGoogle Scholar
  88. 88.
    Germann T, Rude E, Schmitt E. The influence of IL12 on the development of Th1 and Th2 cells and its adjuvant effect for humoral immune responses. Res Immunol 1995; 146(7–8):481–486.PubMedCrossRefGoogle Scholar
  89. 89.
    Maeda A, Schneider SW, Kojima M et al. Enhanced photocarcinogenesis in interleukin-12-deficient mice. Cancer Res 2006; 66(6):2962–2969.PubMedCrossRefGoogle Scholar
  90. 90.
    Baron S, Hernandez J, Bekisz J et al. Clinical model: interferons activate human monocytes to an eradicative tumor cell level in vitro. J Interferon Cytokine Res 2007; 27(2):157–164.PubMedCrossRefGoogle Scholar
  91. 91.
    Billiau A. Interferon-gamma: biology and role in pathogenesis. Adv Immunol 1996; 62:61–130.PubMedCrossRefGoogle Scholar
  92. 92.
    Moore RJ, Owens DM, Stamp G et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 1999; 5(7):828–831.PubMedCrossRefGoogle Scholar
  93. 93.
    Thomas DA, Massague J. TGF-beta directly targets cytotoxic T-cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8(5):369–380.PubMedCrossRefGoogle Scholar
  94. 94.
    Kooy AJ, Prens EP, Van Heukelum A et al. Interferon-gamma-induced ICAM-1 and CD40 expression, complete lack of HLA-DR and CD80 (B7.1) and inconsistent HLA-ABC expression in basal cell carcinoma: a possible role for interleukin-10? J Pathol 1999; 187(3):351–357.PubMedCrossRefGoogle Scholar
  95. 95.
    Kooy AJ, Tank B, Vuzevski VD et al. Expression of interferon-gamma receptors and interferon-gamma-induced up-regulation of intercellular adhesion molecule-1 in basal cell carcinoma; decreased expression of IFN-gamma R and shedding of ICAM-1 as a means to escape immune surveillance. J Pathol 1998; 184(2):169–176.PubMedCrossRefGoogle Scholar
  96. 96.
    Mouawad R, Rixe O, Meric JB et al. Serum interleukin-6 concentrations as predictive factor of time to progression in metastatic malignant melanoma patients treated by biochemotherapy: a retrospective study. Cytokines Cell Mol Ther 2002; 7(4):151–156.PubMedCrossRefGoogle Scholar
  97. 97.
    Jee SH, Shen SC, Chiu HC et al. Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptotic activity and tumorigenic potency. Oncogene 2001; 20(2):198–208.PubMedCrossRefGoogle Scholar
  98. 98.
    Biggs MW, Eiselein JE. Suppression of immune surveillance in melanoma. Med Hypotheses 2001; 56(6):648–652.PubMedCrossRefGoogle Scholar
  99. 99.
    Ijland SA, Jager MJ, Heijdra BM et al. Expression of angiogenic and immunosuppressive factors by uveal melanoma cell lines. Melanoma Res 1999; 9(5):445–450.PubMedCrossRefGoogle Scholar
  100. 100.
    Redondo P, Sanchez-Carpintero I, Bauza A et al. Immunologic escape and angiogenesis in human malignant melanoma. J Am Acad Dermatol 2003; 49(2):255–263.PubMedCrossRefGoogle Scholar
  101. 101.
    Ugurel S, Rappl G, Tilgen W et al. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol 2001; 19(2):577–583.PubMedGoogle Scholar
  102. 102.
    Kim J, Modlin RL, Moy RL et al. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T-cell immune response. J Immunol 1995; 155(4):2240–2247.PubMedGoogle Scholar
  103. 103.
    Guiducci C, Vicari AP, Sangaletti S et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005; 65(8):3437–3446.PubMedGoogle Scholar
  104. 104.
    Luft T, Jefford M, Luetjens P et al. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 2002; 100(4):1362–1372.PubMedCrossRefGoogle Scholar
  105. 105.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29(2):117–129.PubMedCrossRefGoogle Scholar
  106. 106.
    Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003; 3(6):531–536.PubMedCrossRefGoogle Scholar
  107. 107.
    Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67:753–791.PubMedCrossRefGoogle Scholar
  108. 108.
    Pierce DF Jr, Johnson MD, Matsui Y et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 1993; 7(12A):2308–2317.PubMedCrossRefGoogle Scholar
  109. 109.
    Bottinger EP, Jakubczak JL, Haines DC et al. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7, 12-dimethylbenz-[a]-anthracene. Cancer Res 1997; 57(24):5564–5570.PubMedGoogle Scholar
  110. 110.
    Cui W, Fowlis DJ, Bryson S et al. TGFbetal inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86(4):531–542.PubMedCrossRefGoogle Scholar
  111. 111.
    Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002; 2(1):46–53.PubMedCrossRefGoogle Scholar
  112. 112.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29(2):117–129.PubMedCrossRefGoogle Scholar
  113. 113.
    McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol 2004; 172(7):4275–4284.PubMedGoogle Scholar
  114. 114.
    McCarter M, Clarke J, Richter D et al. Melanoma skews dendritic cells to facilitate a T helper 2 profile. Surgery 2005; 138(2):321–328.PubMedCrossRefGoogle Scholar
  115. 115.
    Hermans IF, Silk JD, Gileadi U et al. NKT cells enhance CD4+ and CD8+ T-cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003; 171(10):5140–5147.PubMedGoogle Scholar
  116. 116.
    Pulendran B. Modulating TH1/TH2 responses with microbes, dendritic cells and pathogen recognition receptors. Immunol Res 2004; 29(1–3):187–196.PubMedCrossRefGoogle Scholar
  117. 117.
    Lauerova L, Dusek L, Simickova M et al. Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response. Neoplasma 2002; 49(3):159–166.PubMedGoogle Scholar
  118. 118.
    Girardi M, Oppenheim DE, Steele CR et al. Regulation of cutaneous malignancy by gammadelta T-cells. Science 2001; 294(5542):605–609.PubMedCrossRefGoogle Scholar
  119. 119.
    Tefany FJ, Barnetson RS, Halliday GM et al. Immunocytochemical analysis of the cellular infiltrate in primary regressing and nonregressing malignant melanoma. J Invest Dermatol 1991; 97(2):197–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Ferrone S, Marincola FM. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 1995; 16(10):487–494.PubMedCrossRefGoogle Scholar
  121. 121.
    Garrido F, Ruiz-Cabello F, Cabrera T et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18(2):89–95.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen C, Nabavi N. In vitro induction of T-cell anergy by blocking B7 and early T-cell costimulatory molecule ETC-1/B7-2. Immunity 1994; 1(2):147–154.PubMedCrossRefGoogle Scholar
  123. 123.
    Valenti R, Huber V, Filipazzi P et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T-lymphocytes. Cancer Res 2006; 66(18):9290–9298.PubMedCrossRefGoogle Scholar
  124. 124.
    Parmiani G, Castelli C, Santinami M et al. Melanoma immunology: past, present and future. Curr Opin Oncol 2007; 19(2):121–127.PubMedCrossRefGoogle Scholar
  125. 125.
    Rosenberg SA, Sherry RM, Morton KE et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T-cells in patients with melanoma. J Immunol 2005; 175(9):6169–6176.PubMedGoogle Scholar
  126. 126.
    Mortarini R, Piris A, Maurichi A et al. Lack of terminally differentiated tumor-specific CD8+ T-cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 2003; 63(10):2535–2545.PubMedGoogle Scholar
  127. 127.
    Lengagne R, Le Gal FA, Garcette M et al. Spontaneous vitiligo in an animal model for human melanoma: role of tumor-specific CD8+ T-cells. Cancer Res 2004; 64(4):1496–1501.PubMedCrossRefGoogle Scholar
  128. 128.
    Pardoll DM, Topalian SL. The role of CD4+ T-cell responses in antitumor immunity. Curr Opin Immunol 1998; 10(5):588–594.PubMedCrossRefGoogle Scholar
  129. 129.
    Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 2005; 437(7055):141–146.PubMedCrossRefGoogle Scholar
  130. 130.
    Turk MJ, Guevara-Patino JA, Rizzuto GA et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T-cells. J Exp Med 2004; 200(6):771–782.PubMedCrossRefGoogle Scholar
  131. 131.
    Abbas AK. Die and let live: eliminating dangerous lymphocytes. Cell 1996; 84(5):655–657.PubMedCrossRefGoogle Scholar
  132. 132.
    Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol 1997; 158(10):4521–4524.PubMedGoogle Scholar
  133. 133.
    Hahne M, Rimoldi D, Schroter M et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274(5291):1363–1366.PubMedCrossRefGoogle Scholar
  134. 134.
    Rivoltini L, Radrizzani M, Accornero P et al. Human melanoma-reactive CD4+ and CD8+ CTL clones resist Fas ligand-induced apoptosis and use Fas/Fas ligand-independent mechanisms for tumor killing. J Immunol 1998; 161(3):1220–1230.PubMedGoogle Scholar
  135. 135.
    Dong H, Zhu G, Tamada K et al. B7-H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12):1365–1369.PubMedCrossRefGoogle Scholar
  136. 136.
    Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8):793–800.PubMedGoogle Scholar
  137. 137.
    Iwai Y, Ishida M, Tanaka Y et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19):12293–12297.PubMedCrossRefGoogle Scholar
  138. 138.
    Strome SE, Dong H, Tamura H et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003; 63(19):6501–6505.PubMedGoogle Scholar
  139. 139.
    Tamura H, Dong H, Zhu G et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 2001; 97(6):1809–1816.PubMedCrossRefGoogle Scholar
  140. 140.
    Stander S, Schwarz T. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed in normal skin and cutaneous inflammatory diseases, but not in chronically UV-exposed skin and nonmelanoma skin cancer. Am J Dermatopathol 2005; 27(2):116–121.PubMedCrossRefGoogle Scholar
  141. 141.
    Chebassier N, Leroy S, Tenaud I et al. Overexpression of MMP-2 and MMP-9 in squamous cell carcinomas of immunosuppressed patients. Arch Dermatol Res 2002; 294(3):124–126.PubMedCrossRefGoogle Scholar
  142. 142.
    Guo J, Zhu J, Sheng X et al. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int J Cancer 2007.Google Scholar
  143. 143.
    Ribas A. Update on immunotherapy for melanoma. J Natl Compr Canc Netw 2006; 4(7):687–694.PubMedGoogle Scholar
  144. 144.
    Wigginton JM, Gruys E, Geiselhart L et al. IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J Clin Invest 2001; 108(1):51–62.PubMedGoogle Scholar
  145. 145.
    Lucas ML, Heller R. IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol 2003; 22(12):755–763.PubMedCrossRefGoogle Scholar
  146. 146.
    Marshall JA, Forster TH, Purdie DM et al. Immunological characteristics correlating with clinical response to immunotherapy in patients with advanced metastatic melanoma. Immunol Cell Biol 2006; 84(3):295–302.PubMedCrossRefGoogle Scholar
  147. 147.
    Kono M, Dunn IS, Durda PJ et al. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 2006; 4(10):779–792.PubMedCrossRefGoogle Scholar
  148. 148.
    Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15(2):138–147.PubMedCrossRefGoogle Scholar
  149. 149.
    Tormo D, Ferrer A, Bosch P et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res 2006; 66(10):5427–5435.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of DermatologyCase Western Reserve University, University Hospitals of ClevelandClevelandUSA
  2. 2.Dermatology DepartmentCleveland Veterans Affairs Medical CenterClevelandUSA

Personalised recommendations