Advertisement

Accretion, Trapping and Binding of Sediment in Archean Stromatolites—Morphological Expression of the Antiquity of Life

  • Wladyslaw AltermannEmail author
Part of the Space Sciences Series of ISSI book series (SSSI, volume 25)

Abstract

This paper reviews and discusses Archean stromatolite occurrences and their modes of growth in the context of sedimentary facies. Modes of sediment accretion and trapping and binding of sedimentary grains, together with the resulting morphology of stromatolites and microbial mats in the Archean are analysed, in order to show existing interaction between the growth patterns, morphology and facies association. Architectural elements of sediment arrangement in Archean stromatolites, together with the dependence of stromatolite distribution and morphology on sedimentary facies changes, clearly argue for a biological origin of stromatolitic lamination preserved in Archean cherts and carbonates. The observed sediment behaviour of laminae accretion and sediment precipitation, trapping and binding cannot be explained by abiogenic carbonate or silica precipitation from saturated solutions. The time-dependent, increasing complexity of stromatolitic structures in the Archean is an additional strong argument for biologic impact on stromatolite formation. Therefore, biogenic stromatolites and microbial mats were undoubtfully present at 3.5 Ga and occupied an increasingly wide range of sedimentary environments during the Archean.

Keywords

Early life Stromatolites Sedimentary facies Archean Proterozoic Precambrian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Allwood, M.R. Walter, B.S. Kamber, C.P. Marshall, I.W. Burch, Stromatolite reef from the Early Archean era of Australia. Nature 441(8), 714–718 (2006) CrossRefADSGoogle Scholar
  2. A.C. Allwood, M.R. Walter, I.W. Burch, B.S. Kamber, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambr. Res. 158, 198–227 (2007) CrossRefGoogle Scholar
  3. W. Altermann, The oldest fossils of Africa – a brief reappraisal of reports from the Archean. J. Afr. Earth Sci. 33, 427–436 (2001) CrossRefADSGoogle Scholar
  4. W. Altermann, The evolution of life and its impact on sedimentation, in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, ed. by W. Altermann, P.L. Corcoran. Special Publication International Association of Sedimentologists, vol. 33 (IAS, Blackwell, 2002), pp. 15–32 Google Scholar
  5. W. Altermann, Precambrian stromatolites: Problems in definition, classification, morphology and stratigraphy, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 564–574 Google Scholar
  6. W. Altermann, The early Earth’s record of enigmatic cyanobacteria and supposed extremophilic bacteria at 3.8 to 2.5 Ga, in Algae and Cyanobacteria in Extreme Environment, ed. by J. Seckbach. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11 (Springer, Heidelberg, 2007), Chap. 8 CrossRefGoogle Scholar
  7. W. Altermann, J. Kazmierczak, A. Oren, D. Wright, Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history. Geobiology 4, 147–166 (2006) CrossRefGoogle Scholar
  8. W. Altermann, H.G. Herbig, Tidal flats deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal Craton, Northern Cape Province, South Africa. J. Afr. Earth Sci. 13(3–4), 415–435 (1991) CrossRefGoogle Scholar
  9. W. Altermann, D.R. Nelson, Sedimentation rates, basin analysis, and regional correlations of three Neoarchean and Paleoproterozoic sub-basins of the Kaapvaal Craton as inferred from precise U-Pb zircon ages from volcaniclastic sediments. Sediment. Geol. 120, 225–256 (1998) CrossRefADSGoogle Scholar
  10. W. Altermann, J.W. Schopf, Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambr. Res. 75, 65–90 (1995) CrossRefGoogle Scholar
  11. W. Altermann, H.P. Siegfried, Sedimentology and facies development of an Archean shelf—carbonate platform transition in the Kaapvaal Craton, as deduced from a deep borehole at Kathu, South Africa. J. Afr. Earth Sci. 24(3), 391–410 (1997) CrossRefGoogle Scholar
  12. S.M. Awramik, The history and significance of stromatolites, in Early Organic Evolution: Implications for Mineral and Energy Resources, ed. by M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy, P.A. Trudinger (Springer, Berlin, 1992), pp. 435–449 Google Scholar
  13. S.M. Awramik, H.P. Buchheim, Late Archaean lacustrine carbonates, stromatolites, and transgression, in Proceedings of the Fourth International Archaean Symposium Abstract (2001), pp. 222–223 Google Scholar
  14. S.M. Awramik, M.A. Semikhatov, The relationship between morphology, microstructure, and microbiota in three vertically intergrading stromatolites from the Gunflint Iron Formation. Can. J. Earth Sci. 16, 2319–2330 (1979) CrossRefGoogle Scholar
  15. J. Bertrand-Sarfati, Les stromatolites du Précambrien supérieur du Sahara nord occidental; inventaire, morphologie et microstructures des laminations. Corrélations stratigraphiques. Centre de Recherches sur les Zones Arides, Paris. Public. CNRS, Geol. 14 (1972), 240pp Google Scholar
  16. N.J. Beukes, Facies relations, depositional environments and diagenesis in a major Early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup. South. Afr. Sediment. Geol. 54, 1–46 (1987) ADSGoogle Scholar
  17. M. Black, The algal sediments of Andros Island, Bahamas. R. Soc. Phil. Trans. B 122, 169–192 (1933) Google Scholar
  18. M. Brasier, O. Green, J. Lindsay, A. Steele, Earth’s oldest (>3.5 Ga) fossils and the ‘early Eden hypothesis’: Questioning the evidence. Orig. Life Evol. Biosphere 34, 257–269 (2004) CrossRefADSGoogle Scholar
  19. M. Brasier, N. McLoughlin, O. Green, D. Wacey, A fresch look at the fossil evidence for early Archean cellular life. Phil. Trans. R. Soc. 361(B), 887–902 (2006) Google Scholar
  20. M.D. Brasier, O.R. Green, A.P. Jephcoat, A.K. Kleppe, M.J. Van Kranendonk, J.F. Lindsay, A. Steele, N.V. Grassineau, Questioning the evidence for earth’s oldest fossils. Nature 416, 76–81 (2002) CrossRefADSGoogle Scholar
  21. S.G. Buck, Stromatolite and ooid depositswithin the fluvial and lacustrine sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambr. Res. 12, 301–330 (1980) CrossRefGoogle Scholar
  22. R.V. Burne, L.S. Moore, Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2(3), 241–254 (1987) CrossRefGoogle Scholar
  23. F.H.A. Campbell, M.P. Cecile, Evolution of the Early Proterozoic Kilohigok Basin, Bathurst Inlet–Victoria Island, Northwest Territories. in Proterozoic Basins of Canada, ed. by F.H.A. Campbell. Geological Survey of Canada, paper 81-10, 1981, pp. 103–131 Google Scholar
  24. C.W. Clendenin, Tectonic influence on the evolution of the Early Proterozoic Transvaal sea. Unpubl. Ph.D. thesis, University Witwatersrand, 1989, 376pp Google Scholar
  25. J.A. Donaldson, Aphebian stromatolites in Canada: Implications for stromatolite zonation, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976a), pp. 371–380 CrossRefGoogle Scholar
  26. J.A. Donaldson, Paleoecology of Conophyton and associated stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976b), pp. 523–534 CrossRefGoogle Scholar
  27. C. Dupraz, A. Strasser, Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian), Swiss Jura Mountains. Facies 40, 101–130 (1999) CrossRefGoogle Scholar
  28. K.A. Eriksson, J.F. Truswell, Tidal flat associations from the lower Proterozoic carbonate sequence in South Africa. Sedimentology 21, 293–309 (1974) CrossRefADSGoogle Scholar
  29. K. Grey, Biostratigraphic studies of stromatolites from the Proterozoic Earaheedy Group, Nabberu Basin, Western Australia. West. Aust. Geol. Surv. Bull. 130, 123 (1984) Google Scholar
  30. K. Grey, Stromatolites and other organic remains in the Bangemall Basin. Appendix in Muhling, P.C. and Brakel, A.T., Geology of the Bangemall Group: the evolution of an intracratonic basin. West. Aust. Geol. Surv. Bull. 128, 221–256 (1985) Google Scholar
  31. K. Grey, Book Review—“Proceedings of the Indo-Soviet Symposium on Stromatolites and Stromatolitic Deposits” by K.S. Valdiya (editor). Precambr. Res. 59(3/4), 325–327 (1992) CrossRefADSGoogle Scholar
  32. K. Grey, Stromatolites from the Palaeoproterozoic Earaheedy Group, Earaheedy Basin, Western Australia. Alcheringa 18, 187–218 (1994) CrossRefGoogle Scholar
  33. J.P. Grotzinger, Facies and evolution of Precambrian carbonate depositional systems: Emergence of modern platform archetype. SEPM Spec. Publ. 44, 79–106 (1989) Google Scholar
  34. J.P. Grotzinger, Geochemical model for Proterozoic stromatolite decline. Am. J. Sci. A 290, 80–103 (1990) Google Scholar
  35. J.P. Grotzinger, D.H. Rothman, An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996) CrossRefADSGoogle Scholar
  36. G. Gürich, Les spongiostromides di Viséen de la province de Namur. Muséum d’Historie Naturelle de Belgique, mémoires 3/4, 1–55 (1906) Google Scholar
  37. I.W. Hälbich, D. Lamprecht, W. Altermann, U.E. Horstmann, The carbonate-banded iron formation transition in the Early Proterozoic of South Africa. J. Afr. Earth Sci. 15(2), 217–236 (1992) CrossRefGoogle Scholar
  38. J.D. Hall, Cryptozoön (proliferum) n.g. and s.p.- Rep. N.Y. State Mus. 36, pl. 6, 1883 Google Scholar
  39. H.J. Hofmann, Attributes of stromatolites. Geological Survey Canada, Paper 69/39 (1969), 58pp Google Scholar
  40. H.J. Hofmann, Stromatolites: Characteristics and utility. Earth Sci. Rev. 9, 339–373 (1973) CrossRefADSGoogle Scholar
  41. H.J. Hofmann, On Aphebian stromatolites and Riphean stromatolite stratigraphy. Precambr. Res. 5, 175–205 (1977) CrossRefGoogle Scholar
  42. H.J. Hofmann, Archean stromatolites as microbial archives, in Microbial Sediments, ed. by R.E. Riding, S.M. Awramik (Springer, Berlin, 2000), pp. 315–327 Google Scholar
  43. H.J. Hofmann, K. Grey, A. Hickman, R. Thorpe, Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999) CrossRefGoogle Scholar
  44. P.F. Hoffman, Shallow and deepwater stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. Bull. Am. Assoc. Petroleum Geol. 58(5), 856–867 (1974) Google Scholar
  45. P. Hoffman, Environmental diversity of Middle Precambrian stromatolites, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976), pp. 599–612 CrossRefGoogle Scholar
  46. R. Höferle, D. Haller, A. Tetzlaff, W. Altermann, The unique assemblage of elongated, coniform stromatolites in the Neoarchean Campbellrand Subgroup, southwestern Kaapvaal Craton, South Africa. Abstracts, 18th Colloq. of Afr. Geol., Graz. J. Afr. Earth Sci. 30(4), 40 (2000) Google Scholar
  47. R.J. Horodyski, Environmental influences on columnar stromatolite branching patterns: examples from the Middle Proterozoic Belt Supergroup, Glacier National Park, Montana. J. Paleontol. 51, 661–671 (1977) Google Scholar
  48. E. Kalkowsky, Oolith and Stromatolith im Norddeutschen Bundsandstein. Z. dt. geol. Ges. 60, 68–125 (1908) Google Scholar
  49. J. Kazmierczak, W. Altermann, Neoarchean biomineralisation by benthic cyanobacteria. Science 298, 2351 (2002) CrossRefGoogle Scholar
  50. J. Kazmierczak, S. Kempe, W. Altermann, Microbial origin of Precambrian carbonates: Lessons from modern analogues, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 545–563 Google Scholar
  51. S. Kiyokawa, T. Ito, M. Ikehara, F. Kitajima, Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. GSA Bull. 118(1–2), 3–22 (2006) CrossRefGoogle Scholar
  52. W.E. Krumbein, Stromatolites – the challenge of a term in space and time. Precambr. Res. 20, 493–531 (1983) CrossRefGoogle Scholar
  53. M.B. Lambert, Stromatolites of the late Archean back River stratovolcano, Slave structural province, Northwest Territories, Canada. Can. J. Earth Sci. 35(3), 290–301 (1998) CrossRefADSGoogle Scholar
  54. B.W. Logan, Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 69, 517–533 (1961) ADSCrossRefGoogle Scholar
  55. B.W. Logan, R. Rezak, R.N. Ginsburg, Classification and environmental significance of algal stromatolites. J. Geol. 72, 68–83 (1964) CrossRefADSGoogle Scholar
  56. D.R. Lowe, Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambr. Res. 19, 239–283 (1983) CrossRefADSGoogle Scholar
  57. D.R. Lowe, M.M. Tice, Tectonic controls on atmospheric, climatic, and biological evolution 3.5–3.4 Ga. Precambr. Res. 158, 177–197 (2007) CrossRefGoogle Scholar
  58. T.R. Mason, V. von Brunn, 3-Gyr-old stromatolites from South Africa. Nature 266, 47–49 (1977) CrossRefADSGoogle Scholar
  59. D. Mawson, Some South Australian algal limestones in process of formation. Quart. J. Geol. Soc. 85, 613–623 (1929) CrossRefGoogle Scholar
  60. A.D. Miall, Principles of Sedimentary Basin Analysis (Springer, New York, 1984), 490pp Google Scholar
  61. S. Moorbath, Dating earliest life. Nature 434, 155 (2005) CrossRefADSGoogle Scholar
  62. D.R. Nelson, A.F. Trendall, W. Altermann, Chronological correlations between the Pilbara and Kaapvaal cratons. Precambr. Res. 97(3–4), 165–189 (1999) CrossRefGoogle Scholar
  63. N. Noffke, N. Beukes, J. Gutzmer, R. Hazen, Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambr. Res. 146, 35–44 (2006a) CrossRefGoogle Scholar
  64. N. Noffke, R.N. Hazen, K.A. Eriksson, E.L. Simpson, A new window into early life: Microbial mats in siliciclastic early Archean tidal flat (3.2 Ga Moodies Group, South Africa). Geology 34, 253–256 (2006b) CrossRefADSGoogle Scholar
  65. P.E. Playford, Devonian “Great Barrier Reef” of the Canning Basin, Western Australia. AAPG Bull. 64, 814–840 (1980) Google Scholar
  66. B.R. Pratt, Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology 29, 763–766 (2001) CrossRefADSGoogle Scholar
  67. B.R. Pratt, Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud—Discussion and reply. Geology 30, 580 (2002) CrossRefADSGoogle Scholar
  68. W.V. Preiss, The systematics of South Australian Precambrian and Cambrian Stromatolites, Part I. South Aust. R. Soc. Trans. 96, 67–100 (1972) Google Scholar
  69. W.V. Preiss, The Systematics of South Australian Precambrian and Cambrian Stromatolites, Part II. South Aust. R. Soc. Trans. 97(2), 91–125 (1973) Google Scholar
  70. W.V. Preiss, The systematics of South Australian Precambrian and Cambrian stromatolites, Part III. South Aust. R. Soc. Trans. 98, 105–208 (1974) Google Scholar
  71. M.E. Raaben, A.K. Sinha, Classification of stromatolites: in K.S. Valdiya (ed.) Proceedings of the Indo-Soviet Symposium on Stromatolites and Stromatolitic Deposits. Himal. Geol. 13, 215–227 (1989) Google Scholar
  72. M.E. Raaben, A.K. Sinha, M. Sharma, Precambrian Stromatolites of India and Russia (a catalogue of Type-Form-Genera) (Birbal Sahni Institute of Palaeobotany, Army Printing Press, 2001), 125pp Google Scholar
  73. R. Riding, The term stromatolite: towards an essential definition. Lethaia 32, 321–330 (1999) CrossRefGoogle Scholar
  74. R.E. Riding, S.M. Awramik (eds.), Microbial Sediments (Springer, Berlin, 2000), 331pp Google Scholar
  75. J. Schieber, P. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, O. Catuneanu (eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Atlases in Geosciences, vol. 2 (Elsevier, Amsterdam, 2007), 311p Google Scholar
  76. J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution (Princeton University Press, Princeton, 1983), 543pp Google Scholar
  77. J.W. Schopf, Earth’s earliest biosphere: Status of the hunt, in The Precambrian Earth: Tempos and Events, ed. by P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, O. Catuneanu. Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 516–539 Google Scholar
  78. J.W. Schopf, Microfossils of the early Archean Apex chert: New evidence of the antiquity of life. Science 260, 640–646 (1993) CrossRefADSGoogle Scholar
  79. J.W. Schopf, Fossil evidence of Archaean life. Philos. Trans. R. Soc. Lond. B 361, 869–885 (2006) CrossRefGoogle Scholar
  80. J.W. Schopf, C. Klein (eds.), The Proterozoic Biosphere: A Multidisciplinary Study (Cambridge University Press, Cambridge, 1992), 1348pp Google Scholar
  81. J.W. Schopf, A.B. Kudryavtsev, A.D. Czaja, A.B. Tripathi, Evidence of Archean life: Stromatolites and microfossils. Precambr. Res. 158, 141–155 (2007a) CrossRefGoogle Scholar
  82. J.W. Schopf, M.R. Walter, C. Ruiji, Earliest evidence of life on Earth. Precambr. Res. 158, 139–140 (2007b) CrossRefGoogle Scholar
  83. J.W. Schopf, Yu.K. Sovietov, Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian Biostratigraphy. Science 193, 143–146 (1976) CrossRefADSGoogle Scholar
  84. S.N. Serebryakov, M.A. Semikhatov, Riphean and Recent stromatolites: a comparison. Am. J. Sci. 274(6), 556–574 (1974) CrossRefGoogle Scholar
  85. B.M. Simonson, K.E. Carney, Roll-Up Structures: Evidence of in situ Microbial Mats in Late Archean Deep Shelf Environments. Palaios 14, 13–24 (1999) CrossRefGoogle Scholar
  86. D.Y. Sumner, Decimetre-thick encrustations of calcite and aragonite on the sea-floor and implications for Neoarchean and Neoproterozoic ocean chemistry, in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, ed. by W. Altermann, P.L. Corcoran. I.A.S. Spec. Publ., vol. 33 (Blackwell, Oxford, 2002), pp. 107–122 Google Scholar
  87. K. Sugitani, K. Grey, A. Allwood, T. Nagaoka, K. Mimura, M. Minami, C.P. Marshall, M.J. Van Kranendonk, M.R. Walter, Diverse microstructures from Archean chert from the Mount Goldsworthy – Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? Precambr. Res. 158, 228–262 (2007) CrossRefGoogle Scholar
  88. M.M. Tice, D.R. Lowe, The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Sci. Rev. 76, 259–300 (2006) CrossRefADSGoogle Scholar
  89. J.F. Truswell, K.A. Eriksson, Stromatolitic associations and their palaeo-environmental significance: A re-appraisal of a lower Proterozoic locality from the northern Cape Province, South Africa. Sediment. Geol. 10, 1–23 (1973) CrossRefADSGoogle Scholar
  90. Y. Ueno, Y. Isozaki, H. Yurimoto, S. Maruyama, Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int. Geol. Rev. 40, 196–212 (2001) CrossRefGoogle Scholar
  91. Y. Ueno, Y. Isozaki, K.J. McNamara, Coccoid-like microstructures in a 3.0 Ga Chert from Western Australia. Int. Geol. Rev. 48, 78–88 (2006a) CrossRefGoogle Scholar
  92. Y. Ueno, K. Yamada, N. Yoshida, S. Maruyama, Y. Isozaki, Evidence from fluid inclusions for microbial methanogenesis in the early Archean era. Nature 440(23), 516–519 (2006b) CrossRefADSGoogle Scholar
  93. M.J. Van Kranendonk, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci. Rev. 74, 197–240 (2006) CrossRefADSGoogle Scholar
  94. M.J. Van Kranendonk, A.H. Hickman, I.R. Williams, W. Nijman, Archaean geology of the East Pilbara Granite-Greenstone Terrane Western Australia—a field guide. Geological Survey of Western Australia, Record 2001/9, Perth, 2001, 134pp Google Scholar
  95. M.A. Van Zuilen, M. Chaussidon, C. Rollion-Bard, B. Marty, Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71(3), 655–669 (2007) CrossRefADSGoogle Scholar
  96. M.M. Walsh, Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambr. Res. 54, 271–293 (1992) CrossRefADSGoogle Scholar
  97. M.R. Walter, Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Paleont. Assoc. Lond. Spec. Pap. 11, 190 (1972) Google Scholar
  98. M.R. Walter, Introduction, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976a), pp. 1–3 CrossRefGoogle Scholar
  99. M.R. Walter (ed.), Stromatolites. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976b), 790pp Google Scholar
  100. M.R. Walter, J.P. Grotzinger, J.W. Schopf, Proterozoic stromatolites, in The Proterozoic Biosphere, ed. by J.W. Schopf, C. Klein (Cambridge University Press, New York, 1992), pp. 253–260 Google Scholar
  101. M.R. Walter, J. Bauld, T.D. Brock, Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park, in Stromatolites, ed. by M.R. Walter. Developments in Sedimentology, vol. 20 (Elsevier, Amsterdam, 1976), pp. 273–310 CrossRefGoogle Scholar
  102. D.T. Wright, W. Altermann, Microfacies development in Late Archaean stromatolites and oolites of the Campbellrand Subgroup, South Africa, in Carbonate Platform Systems. Components and interactions, ed. by E. Insalco, P.W. Skelton, T.J. Palmer. Geol. Soc. London, Spec. Publ., vol. 178 (2000), pp. 51–70 Google Scholar

Copyright information

© Springer Science+Business Media, BV 2008

Authors and Affiliations

  1. 1.Dept. Earth & Environmental SciencesGeology and GeoBio-Center LMUMunichGermany

Personalised recommendations