Advertisement

Chirality and Life

  • Laurence D. BarronEmail author
Part of the Space Sciences Series of ISSI book series (SSSI, volume 25)

Abstract

Chirality, meaning handedness, pervades much of modern science, from the physics of elementary particles to the chemistry of life. The amino acids and sugars from which the central molecules of life—proteins and nucleic acids—are constructed exhibit homochirality, which is expected to be a key biosignature in astrobiology. This article provides a brief review of molecular chirality and its significance for the detection of extant or extinct life on other worlds. Fundamental symmetry aspects are emphasized since these bring intrinsic physical properties of the universe to bear on the problem of the origin and role of homochirality in the living world.

Keywords

Homochirality Origin of life Absolute enantioselection Mirror symmetry breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, L.D. Barron, Chem. Rev. 98, 2391 (1998) CrossRefGoogle Scholar
  2. M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Orig. Life 34, 391 (2004a) CrossRefGoogle Scholar
  3. M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Tet. Asym. 15, 3171 (2004b) CrossRefGoogle Scholar
  4. V.A. Avetisov, V.I. Goldanskii, V.V. Kuz’min, Phys. Today, July, 33 (1991) Google Scholar
  5. J.L. Bada, G.D. McDonald, Icarus 114, 139 (1995) CrossRefADSGoogle Scholar
  6. J. Bailey, A. Chryosostomou, J.H. Hough, T.M. Gledhill, A. McCall, S. Clark, F. Ménard, M. Tamura, Science 281, 672 (1998) CrossRefADSGoogle Scholar
  7. P. Ball, Nature 436, 1084 (2005) CrossRefADSGoogle Scholar
  8. L.D. Barron, J. Am. Chem. Soc. 108, 5539 (1986) CrossRefGoogle Scholar
  9. L.D. Barron, Chem. Phys. Lett. 135, 1 (1987) CrossRefADSGoogle Scholar
  10. L.D. Barron, Chem. Phys. Lett. 221, 311 (1994a) CrossRefADSGoogle Scholar
  11. L.D. Barron, Science 266, 1491 (1994b) CrossRefADSGoogle Scholar
  12. L.D. Barron, Nature 405, 895 (2000) CrossRefGoogle Scholar
  13. L.D. Barron, in Chirality in Natural and Applied Science, ed. by W.J. Lough, I.W. Wainer (Blackwell, Oxford, 2002), p. 53 Google Scholar
  14. L.D. Barron, Molecular Light Scattering and Optical Activity, 2nd edn (Cambridge University Press, Cambridge, 2004) Google Scholar
  15. L.D. Barron, F. Zhu, L. Hecht, G.E. Tranter, N.W. Isaacs, J. Mol. Struct. 834, 7 (2007) CrossRefADSGoogle Scholar
  16. J.-P. Behr (ed.) The Lock and Key Principle (Wiley, New York, 1994) Google Scholar
  17. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982) Google Scholar
  18. W.A. Bonner, Top. Stereochem. 18, 1 (1988) CrossRefGoogle Scholar
  19. M.A. Bouchiat, C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997) CrossRefADSGoogle Scholar
  20. A. Brack, Adv. Space Res. 24, 417 (1999) CrossRefADSGoogle Scholar
  21. P. Cintas, Ang. Chem. Int. Ed. 41, 1139 (2002) CrossRefGoogle Scholar
  22. R.N. Compton, R.M. Pagni, Adv. At. Mol. Opt. Phys. 48, 219 (2002) Google Scholar
  23. J.J.L.M. Cornelissen, A.E. Rowan, R.J.M. Nolte, N.A.J.M. Sommerdijk, Chem. Rev. 101, 4039 (2001) CrossRefGoogle Scholar
  24. J.R. Cronin, S. Pizzarello, Science 275, 951 (1997) CrossRefADSGoogle Scholar
  25. P. Curie, J. Phys. (Paris) 3, 393 (1894) Google Scholar
  26. B.L. Feringa, R.A. van Delden, Angew. Chem. Int. Ed. 38, 3418 (1999) CrossRefGoogle Scholar
  27. N. Fujii, Orig. Life 32, 103 (2002) CrossRefGoogle Scholar
  28. K. Gottfried, V.F. Weisskopf, Concepts of Particle Physics, vol. 1 (Clarendon Press, Oxford, 1984) Google Scholar
  29. M.M. Green, N.C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson, Science 268, 1860 (1995) CrossRefADSGoogle Scholar
  30. R.M. Hazen, T.R. Filley, G.A. Goodfriend, Proc. Natl. Acad. Sci. USA 98, 5487 (2001) CrossRefADSGoogle Scholar
  31. R.A. Hegstrom, D.W. Rein, P.G.H. Sandars, J. Chem. Phys. 73, 2329 (1980) CrossRefADSGoogle Scholar
  32. F.M. Jaeger, Optical Activity and High-Temperature Measurements (McGraw-Hill, New York, 1930) Google Scholar
  33. G.F. Joyce, G.M. Visser, C.A.A. van Boeckel, J.H. van Boom, L.E. Orgel, J. van Westresen, Nature 310, 602 (1984) CrossRefADSGoogle Scholar
  34. Lord Kelvin, Baltimore Lectures (C.J. Clay & Sons, London, 1904) zbMATHGoogle Scholar
  35. L. Keszthelyi, Quart. Rev. Biophys. 28, 473 (1995) CrossRefGoogle Scholar
  36. M. Klussman, H. Iwamura, S.P. Mathew, D.H. Wells Jr., U. Pandya, A. Armstrong, D.G. Blackmond, Nature 441, 621 (2006) CrossRefADSGoogle Scholar
  37. D.K. Kondepudi, K. Asakura, Accs. Chem. Res. 34, 946 (2001) CrossRefGoogle Scholar
  38. R. Konno, H. Brückner, A. D’Aniello, G.H. Fisher, N. Fujii, H. Homma (eds.), D-Amino Acids: A New Frontier in Amino Acid and Protein Research – Practical Methods and Protocols (Nova Science Publishers, New York, 2007) Google Scholar
  39. M. Lahav, I. Weissbuch, E. Shavit, C. Reiner, G.J. Nicholson, V. Schurig, Orig. Life 36, 151 (2006) CrossRefGoogle Scholar
  40. A.J. MacDermott, in Chirality in Natural and Applied Science, ed. by W.J. Lough, I.W. Wainer (Blackwell, Oxford, 2002), p. 23 Google Scholar
  41. S.F. Mason, Chem. Soc. Rev. 17, 347 (1988) CrossRefGoogle Scholar
  42. U.J. Meierhenrich, L. Nahon, C. Alcarez, J.H. Bredehöft, S.V. Hoffman, B. Barbier, A. Brack, Ang. Chem. Int. Ed. 44, 5630 (2005) CrossRefGoogle Scholar
  43. C.A. Orme, A. Noy, A. Wierzbicki, M.T. McBride, M. Grantham, H.H. Teng, P.M. Dove, J.J. DeYoreo, Nature 411, 775 (2001) CrossRefADSGoogle Scholar
  44. R.M. Pagni, R.N. Compton, Cryst. Growth Des. 2, 249 (2002) CrossRefGoogle Scholar
  45. L. Pasteur, Bull. Soc. Chim. France 41, 219 (1884) Google Scholar
  46. R.H. Perry, C. Wu, M. Nefliu, R.G. Cooks, Chem. Commun., 2007, p. 1071 Google Scholar
  47. S. Pizzarello, Accs. Chem. Res. 39, 231 (2006) CrossRefGoogle Scholar
  48. S. Pizzarello, M. Zolensky, K.A. Turk, Geochim. Cosmochim. Acta 67, 1589 (2003) CrossRefADSGoogle Scholar
  49. J. Popp, M. Schmitt, J. Raman Spectrosc. 35, 429 (2004) CrossRefADSGoogle Scholar
  50. M. Quack, Ang. Chem. Int. Ed. 41, 4618 (2002) CrossRefGoogle Scholar
  51. G.L.J.A. Rikken, E. Raupach, Nature 405, 932 (2000) CrossRefADSGoogle Scholar
  52. I. Rubinstein, R. Eliash, G. Bolbach, I. Weissbuch, M. Lahav, Ang. Chem. Int. Ed. 46, 1 (2007) CrossRefGoogle Scholar
  53. A.M. Skelley, R.A. Mathies, J. Chromatogr. A1021, 191 (2003) CrossRefGoogle Scholar
  54. W.B. Sparks, J.H. Hough, L.E. Bergeron, Astrobiology 5, 737 (2005) CrossRefADSGoogle Scholar
  55. G.H. Wagnière, A. Meir, Chem. Phys. Lett. 93, 78 (1982) CrossRefADSGoogle Scholar
  56. R. Wesendrup, J.K. Laerdahl, R.N. Compton, P. Schwerdtfeger, J. Phys. Chem. A 107, 6668 (2003) CrossRefGoogle Scholar
  57. I. Weissbuch, L. Leiserowitz, M. Lahav, Top. Curr. Chem. 259, 123 (2005) CrossRefGoogle Scholar
  58. E. Westhof (ed.), Water and Biological Macromolecules (CRC, Boca Raton, 1993) Google Scholar
  59. D.C.B. Whittet, Dust in the Galactic Environment (Institute of Physics Publishing, Bristol, 1992) CrossRefGoogle Scholar
  60. R.D. Wolstencroft, G.E. Tranter, D.D. Le Pevelen, IAU Symp. 213, 149 (2002) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, BV 2008

Authors and Affiliations

  1. 1.WestCHEM, Department of ChemistryUniversity of GlasgowGlasgowUK

Personalised recommendations