Molecular Biosignatures

  • Roger E. SummonsEmail author
  • Pierre Albrecht
  • Gene McDonald
  • J.  Michael Moldowan
Part of the Space Sciences Series of ISSI book series (SSSI, volume 25)


Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous.

A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism.

Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures.

Measurable attributes of molecular biosignatures include:

  1. Enantiomeric excess

  2. Diastereoisomeric preference

  3. Structural isomer preference

  4. Repeating constitutional sub-units or atomic ratios

  5. Systematic isotopic ordering at molecular and intramolecular levels

  6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.

In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.


Biomarkers Lipids Isomerism Chirality Life-detection Diagnostic molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Adam, B. Mycke, J.C. Schmid, P. Albrecht, Energy Fuels 6, 553–559 (1992) Google Scholar
  2. P. Adam, J.C. Schmid, B. Mycke, C. Strazielle, J. Connan, A. Huc, A. Riva, P. Albrecht, Geochimica Cosmochimica Acta 57, 3395–3419 (1993) ADSGoogle Scholar
  3. P. Adam, E. Philippe, P. Albrecht, Geochimica Cosmochimica Acta 62, 265–271 (1998) ADSGoogle Scholar
  4. E. Anders, Nature 342, 255–257 (1989) ADSGoogle Scholar
  5. E. Anders, E. Zinner, Meteoritics 28, 490–514 (1993) ADSGoogle Scholar
  6. J.T. Andersson, S. Bobinger, Polycycl. Aromat. Compd. 11, 145–151 (1996) Google Scholar
  7. V.P. Aneja, M. Das, D.S. Kim, B.E. Hartsell, Israel J. Chem. 34, 387–401 (1994) Google Scholar
  8. A. Aubrey, H.J. Cleaves, J.H. Chalmers, A.M. Skelley, R.A. Mathies, F.J. Grunthaner, P. Ehrenfreund, J.L. Bada, Geology 34, 357–360 (2006) ADSGoogle Scholar
  9. J.L. Bada, J.R. Cronin, M.-S. Ho, K.A. Kvenvolden, J.G. Lawless, S.L. Miller, S. Oro, J. Steinberg, Nature 301, 494–497 (1983) ADSGoogle Scholar
  10. J.L. Bada et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9213-3 Google Scholar
  11. J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. McCall, F. Menard, M. Tamura, Science 281, 672–674 (1998) ADSGoogle Scholar
  12. A. Barbé, J.O. Grimalt, J.J. Pueyo, J. Albaigés, in Advances in Organic Geochemistry, ed. by B. Durand, F. Behar (Pergamon Press, Oxford, 1990), pp. 815–828 Google Scholar
  13. L. Barron, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9254-7 Google Scholar
  14. L. Becker, R.J. Poreda, T.E. Bunch, Proc. Natl. Acad. Sci. USA 97, 2979–2983 (2000) ADSGoogle Scholar
  15. K. Biemann, Proc. Natl. Acad. Sci. USA 104, 10310–10313 (2007) ADSGoogle Scholar
  16. K. Biemann, J. Oro, P. ToulminIII, L.E. Orgel, A.O. Nier, D.M. Anderson, P.G. Simmonds, D. Flory, A.V. Diaz, D.R. Rushneck, J.A. Biller, Science 194, 72–76 (1976) ADSGoogle Scholar
  17. W. Bonner, Homochirality and Life. D-Amino Acids in Sequences of Secreted Peptides of Multicellular Organisms (Birkhaeuser, Basel, 1998) pp. 159–188 Google Scholar
  18. J.J. Boon, H. Hines, A.L. Burlingame, J. Klok, W.I.C. Rijpstra, J.W. de Leeuw, K.E. Edmunds, G. Eglinton, in Advances in Organic Geochemistry ed. by M. Bjoroy et al. (Wiley, Chichester, 1981), pp. 207–227 Google Scholar
  19. J.J. Brocks, G.A. Logan, R. Buick, R.E. Summons, Science 285, 1033–1036 (1999) Google Scholar
  20. J.J. Brocks, R.E. Summons, in Treatise on Geochemistry, ed. by D.H.a.K.K.T. Heinrich (Pergamon, Oxford, 2003), pp. 63–115 Google Scholar
  21. J.J. Brocks, G.D. Love, C.E. Snape, G.A. Logan, R.E. Summons, R. Buick, Geochimica Cosmochimica Acta 67, 1521–1530 (2003a) ADSGoogle Scholar
  22. J.J. Brocks, R.E. Summons, G.A. Logan, R. Buick, Geochimica Cosmochimica Acta 67, 4289–4319 (2003b) ADSGoogle Scholar
  23. J.J. Brocks, R. Buick, R.E. Summons, G.A. Logan, Geochimica Cosmochimica Acta 67, 4321–4335 (2003c) ADSGoogle Scholar
  24. J.J. Brocks, R.E. Summons, R. Buick, G.A. Logan, Org. Geochem. 34, 1161–1175 (2003d) Google Scholar
  25. J.R. Brown, M. Kasrai, G.M. Bancroft, K.H. Tan, J.M. Chen, Fuel 71, 649–653 (1992) Google Scholar
  26. A. Buch, D.P. Glavin, R. Sternberg, C. Szopa, C. Rodier, R. Navarro-Gonzalez, F. Raulin, M. Cabane, P.R. Mahaffy, Planet. Space Sci. 54, 1592–1599 (2006) ADSGoogle Scholar
  27. R. Buick, B. Rasmussen, B. Krapez, AAPG Bull. 82, 50–69 (1998) Google Scholar
  28. D.E. Canfield, Geochimica Cosmochimica Acta 53, 619–632 (1989) ADSGoogle Scholar
  29. S. Chang, D. Des Marais, R. Mack, S.L. Miller, G.E. Strathearn, in Earth’s Earliest Biosphere, ed. by J.W. Schopf (Princeton University Press, Princeton, 1983), pp. 53–92 Google Scholar
  30. A. Charrié-Duhaut, S. Lemoine, P. Adam, J. Connan, P. Albrecht, J. Conf. Abstr. 4, 572 (1999) Google Scholar
  31. A. Charrié-Duhaut, S. Lemoine, P. Adam, J. Connan, P. Albrecht, Org. Geochem. 31, 977–1003 (2000) Google Scholar
  32. C.F. Chyba, C. Sagan, Nature 355, 125–132 (1992) ADSGoogle Scholar
  33. J.L. Clayton, P.J. Swetland, Geochimica Cosmochimica Acta 42, 305–312 (1978) ADSGoogle Scholar
  34. S. Clemett, C. Maechling, R. Zare, P. Swan, R. Walker, Science 262, 721–725 (1993) ADSGoogle Scholar
  35. J. Connan, A. Nissenbaum, D. Dessort, Geochimica Cosmochimica Acta 56, 2743–2759 (1992) ADSGoogle Scholar
  36. G.W. Cooper, M.H. Thiemens, T.L. Jackson, S. Chang, Science 277, 1072–1074 (1997) ADSGoogle Scholar
  37. W.J. Cooper, R.G. Zika, Science 220, 711–712 (1983) ADSGoogle Scholar
  38. W.J. Cooper, R.G. Zika, R.G. Petasne, A.M. Fisher, in Aquatic Humic Substances, ed. by I.H. Suffet P. MacCarthy. ACS Symposium Series, vol. 219 (American Chemical Society, Washington, 1989) pp. 333–362 Google Scholar
  39. J.R. Cronin, S. Pizzarello, D.P. Cruikshank, in Meteorites and the Early Solar System, ed. by J.F. Kerridge M.S. Matthews (University of Arizona Press, Tucson, 1988) pp. 819–857 Google Scholar
  40. J.R. Cronin, S. Chang, in The Chemistry of Life’s Origin, ed. by J.M. Greenberg et al. (Kluwer, Netherlands, 1993) pp. 209–258 Google Scholar
  41. J.R. Cronin, S. Pizzarello, S. Epstein, R.V. Krishnamurthy, Geochimica Cosmochimica Acta 57, 4745–4752 (1993) ADSGoogle Scholar
  42. J.R. Cronin, S. Pizzarello, Science 275, 951–955 (1997) ADSGoogle Scholar
  43. J. Dahl, R. Hallberg, I.R. Kaplan, Org. Geochem. 12, 559–571 (1988) Google Scholar
  44. I.M. De Castro, Lipides de microorganismes et de sédiments actuels. PhD thesis, Université Louis Pasteur, Strasbourg, France, 1994 Google Scholar
  45. M.J. DeNiro, S. Epstein, Science 197, 261–263 (1977) ADSGoogle Scholar
  46. A. Disch, J. Schwender, C. Müller, H.K. Lichtenthaler, M. Rohmer, Biochem. J. 333, 381–388 (1998) Google Scholar
  47. A. Dutkiewicz, B. Rasmussen, R. Buick, Nature 395, 885–888 (1998) ADSGoogle Scholar
  48. G. Eglinton, P.M. Scott, T. Besky, A.L. Burlingame, M. Calvin, Science 145, 263–264 (1964) ADSGoogle Scholar
  49. G. Eglinton, M. Calvin, Sci. Am. 261, 32–43 (1967) Google Scholar
  50. Eigenbrode, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9252-9 Google Scholar
  51. M. Erhardt, G. Petrick, Marine Chem. 15, 47–58 (1984) Google Scholar
  52. M. Ehrhardt, G. Petrick, Marine Chem. 16, 227–238 (1985) Google Scholar
  53. E.L. Eliel, S.H. Wilen, L.N. Mander, Stereochemistry of Organic Compounds (Wiley, New York, 1994) 1267 pp Google Scholar
  54. M.H. Engel, B. Nagy, Nature 296, 837–840 (1982) ADSGoogle Scholar
  55. M.H. Engel, S.A. Macko, eds., Org. Geochem. Principles and Applications (Plenum Press, New York, 1993) Google Scholar
  56. M.H. Engel, S.A. Macko, J.A. Silfer, Nature 348, 47–49 (1990) ADSGoogle Scholar
  57. M.H. Engel, S.A. Macko, Nature 389, 265–268 (1997) ADSGoogle Scholar
  58. G. Flesch, M. Rohmer, Eur. J. Biochem. 175, 405–411 (1988) Google Scholar
  59. G. Flynn, Earth, Moon, Planets 72, 469–474 (1966) ADSGoogle Scholar
  60. M.N. Fomenkova, S. Chang, L.M. Mukhin, Geochimica Cosmochimica Acta 58, 4503–4512 (1994) ADSGoogle Scholar
  61. M.A. Fox, S. Olive, Science 205, 582–583 (1979) ADSGoogle Scholar
  62. G.S. Frysinger, R.B. Gaines, C.M. Reddy, Environ. Forensics 3, 27–34 (2002) Google Scholar
  63. F. Gelin, I. Boogers, A.A.M. Noordeloos, J.S. Sinninghe Damsté, P. Hatcher, J.W. de Leeuw, Geochimica Cosmochimica Acta 60, 1275–1280 (1996) ADSGoogle Scholar
  64. M. Giuliano, F. El Anba-Luro, P. Doumenq, G. Mille, J.F. Rontani, J. Photochem. Photobiol. A: Chem. 102, 127–132 (1997) Google Scholar
  65. J.A. Gransch, J. Posthuma, in Advances in Organic Geochemistry, ed. by B. Tissot, F. Bienner (Editions Technip, Paris, 1974), pp. 727–739 Google Scholar
  66. K. Grice, R. Gibbison, J.E. Atkinson, L. Schwark, C.B. Eckardt, J.R. Maxwell, Geochimica Cosmochimica Acta 60, 3913–3924 (1996) ADSGoogle Scholar
  67. J.M. Hayes, Marine Geol. 113, 111–125 (1993) Google Scholar
  68. J.M. Hayes, in J.W. Valley, D.R. Cole eds., Stable isotopic geochemistry, Rev. Mineral. Geochem. 43, 225–277 (2001) Google Scholar
  69. J.M. Hayes, K. Biemann, Geochimica Cosmochimica Acta 32, 239–267 (1968) ADSGoogle Scholar
  70. J.M. Hayes, I.R. Kaplan, K.W. Wedeking, in Earth’s Earliest Biosphere; Its Origin and Evolution, ed. by J.W. Schopf (Princeton University Press, Princeton, 1983) pp. 93–134 Google Scholar
  71. R.M. Hazen, T.R. Filley, G.A. Goodfriend, Proc. Nat. Acad. Sci. USA 98, 5487–5490 (2001) ADSGoogle Scholar
  72. Y. Hebting, P. Schaeffer, A. Behrens, P. Adam, G. Schmitt, P. Schneckenburger, S.M. Bernasconi, P. Albrecht, Science 312, 1627–1631 (2006) ADSGoogle Scholar
  73. K.-U. Hinrichs, G. Eglinton, M.H. Engel, R.E. Summons, Geochem. Geophys. Geosyst. 1 (2001). 2001GC000142 Google Scholar
  74. J.I. Hedges, R.G. Keil, Marine Chem. 49, 81–115 (1995) Google Scholar
  75. K.U. Ingold, Acc. Chem. Res. 2, 1–9 (1969) Google Scholar
  76. A. Kadouri, S. Derenne, C. Largeau, E. Casadevall, C. Berkaloff, Phytochemistry 27, 551–557 (1988) Google Scholar
  77. Y.V. Kissin, Org. Geochem. 29, 947–962 (1998) Google Scholar
  78. G. Kminek, J.L. Bada, O. Botta, D.P. Glavin, F. Grunthaner, Planet. Space Sci. 48, 1087–1091 (2000) ADSGoogle Scholar
  79. M.E.L. Kohnen, J.S. Sinninghe Damsté, A.C. Kock-van Dalen, J.W. de Leeuw, Geochimica Cosmochimica Acta 55, 1375–1394 (1991a) ADSGoogle Scholar
  80. M.E.L. Kohnen, J.S. Sinninghe Damsté, J.W. de Leeuw, Nature 349, 775–778 (1991b) ADSGoogle Scholar
  81. M.E.L. Kohnen, J.S. Sinninghe Damsté, M. Baas, A.C. Kock-van-Dalen, J.W. de Leeuw, Geochimica Cosmochimica Acta 57, 2515–2528 (1993) ADSGoogle Scholar
  82. M.D. Kok, W.I.C. Rijpstra, L. Robertson, J.K. Volkman, J.S. Sinninghe Damsté, Geochimica Cosmochimica Acta 64, 1425–1436 (2000) ADSGoogle Scholar
  83. S. Korcek, J.H.B. Chenier, J.A. Howard, K.U. Ingold, Can. J. Chem. 50, 2285–2297 (1972) Google Scholar
  84. L.J. Kovalenko, C.R. Maechling, S.J. Clemett, J.M. Philippoz, R.N. Zare, Analyt. Chem. 64, 682–690 (1992) Google Scholar
  85. C.C. Kung, R. Hayatsu, M.H. Studier, R.N. Clayton, Earth Planet. Sci. Lett. 38, 421–435 (1979) ADSGoogle Scholar
  86. K. Kvenvolden, J. Lawless, K. Pering, E. Peterson, J. Flores, C. Ponnamperuma, I.R. Kaplan, C. Moore, Nature 228, 623–626 (1970) Google Scholar
  87. R.M. Lemmon, Chem. Rev. 70, 95–109 (1970) Google Scholar
  88. M.D. Lewan, Geochimica Cosmochimica Acta 61, 3691–3723 (1997) ADSGoogle Scholar
  89. D. Leythaeuser, Geochimica Cosmochimica Acta 37, 113–120 (1973) ADSGoogle Scholar
  90. H.K. Lichtenthaler, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47–65 (1999) Google Scholar
  91. G.D. Love, C.E. Snape, A.D. Carr, R.C. Houghton, Org. Geochem. 23, 981–986 (1995) Google Scholar
  92. Mahaffy, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9223-1 zbMATHGoogle Scholar
  93. P.J. Marriott, R.M. Kinghorn, Anal. Chem. 69, 2582–2588 (1997) Google Scholar
  94. T. McCollum, Geochimica Cosmochimica Acta 67, 311–317 (2003) ADSGoogle Scholar
  95. T. McCollum, G. Ritter, B.R.T. Simoneit, Orig. Life Evol. Biosphere 29, 153–166 (1999) ADSGoogle Scholar
  96. T.M. McCollom, J.S. Seewald, Earth Planet. Sci. Lett. 243, 74–84 (2006) ADSGoogle Scholar
  97. T. McCollum, B.R.T. Simoneit, Orig. Life Evol. Biosphere 29, 167–186 (1999) ADSGoogle Scholar
  98. McKay, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9229-8 Google Scholar
  99. K.D. McKeegan, R.M. Walker, E. Zinner, Geochimica Cosmochimica Acta 49, 1971–1987 (1985) ADSGoogle Scholar
  100. S.L. Miller, Science 117, 527–528 (1953) ADSGoogle Scholar
  101. K.D. Monson, J.M. Hayes, Geochimica Cosmochimica Acta 46, 139–149 (1982) ADSGoogle Scholar
  102. A.P. Murray, I.B. Sosrowidjojo, R. Alexander, R.I. Kagi, C.M. Norgate, R.E. Summons, Geochimica Cosmochimica Acta 61, 1261–1276 (1997) ADSGoogle Scholar
  103. I.P. Murray, G.D. Love, C.E. Snape, N.J.L. Bailey, Org. Geochem. 29, 1487–1505 (1998) Google Scholar
  104. B. Nagy, Naturwissenschaften 69, 301–310 (1982) ADSGoogle Scholar
  105. H. Naraoka, A. Shimoyama, K. Harada, Earth Planet. Sci. Lett. 184, 1–7 (2000) ADSGoogle Scholar
  106. R. Navarro-Gonzalez, F.A. Rainey, P. Molina, D.R. Bagaley, B.J. Hollen, J. de la Rosa, A.M. Small, R.C. Quinn, F.J. Grunthaner, L. Caceres, B. Gomez-Silva, C.P. McKay, Science 302, 1018–1021 (2003) ADSGoogle Scholar
  107. R. Navarro-Gonzalez, K.F. Navarro, J. de la Rosa, E. Iniguez, P. Molina, L.D. Miranda, P. Morales, E. Cienfuegos, P. Coll, F. Raulin, R. Amils, C.P. McKay, Proc. Nat. Acad. Sci. USA 103, 16089–16094 (2006) ADSGoogle Scholar
  108. W.R. Nes, M.L. McKean, Biochemistry of Steroids and Other Isopentenoids (University Park Press, Baltimore, 1977) 690 pp Google Scholar
  109. G. Ourisson, P. Albrecht, Acc. Chem. Res. 25, 398–402 (1992) Google Scholar
  110. G. Ourisson, M. Rohmer, K. Poralla, Annu. Rev. Microbiol. 41, 301–333 (1987) Google Scholar
  111. V.J. Orphan, C.H. House, K.-U. Hinrichs, K.D. McKeegan, E.F. Delong, Proc. Nat. Acad. Sci. USA 99, 7663–7668 (2002) ADSGoogle Scholar
  112. K.E. Peters, C.C. Walters, J.M. Moldowan, The Biomarker Guide, 2nd edn. (Cambridge University Press, Cambridge, 2005), Parts 1 and 2, 1155 pp Google Scholar
  113. S.T. Petsch, R.A. Berner, T.I. Eglinton, Org. Geochem. 31, 475–487 (2000) Google Scholar
  114. S. Pizzarello, J.R. Cronin, Geochimica Cosmochimica Acta 64, 329–338 (2000) ADSGoogle Scholar
  115. S. Pizzarello, Acc. Chem. Res. 39, 231–237 (2006) Google Scholar
  116. J. Poinsot, P. Schneckenburger, P. Adam, P. Schaeffer, J.M. Trendel, A. Riva, P. Albrecht, Geochimica Cosmochimica Acta 62, 805–814 (1998) ADSGoogle Scholar
  117. G.L.J.A. Rikken, E. Raupach, Nature 405, 932–934 (2000) ADSGoogle Scholar
  118. D. Ring, Y. Wolman, N. Friedmann, S.L. Miller, Proc. Nat. Acad. Sci. USA 69, 765–769 (1972) ADSGoogle Scholar
  119. M. Rohmer, Pure Appl. Chem. 75, 375–387 (2003) Google Scholar
  120. J.F. Rontani, G. Giusti, J. Photochem. Photobiol. A: Chem. 40, 107–120 (1987) Google Scholar
  121. J.F. Rontani, G. Giusti, J. Photochem. Photobiol. A: Chem. 46, 357–365 (1989) Google Scholar
  122. E. Rubenstein, W.A. Bonner, H.P. Noyes, G.S. Brown, Nature 300, 118 (1983) ADSGoogle Scholar
  123. G. Sarret, J. Connan, M. Kasrai, G.M. Bancroft, A. Charrié-Duhaut, S. Lemoine, P. Adam, P. Albrecht, L. Eybert-Bérard, Geochimica Cosmochimica Acta 63, 3767–3779 (1999) ADSGoogle Scholar
  124. P. Schaeffer, C. Reiss, P. Albrecht, Org. Geochem. 23, 567–581 (1995) Google Scholar
  125. P. Schaeffer, P. Adam, P. Wehrung, P. Albrecht, Tetrahedron Lett. 48, 8413–8416 (1997a) Google Scholar
  126. P. Schaeffer, P. Adam, P. Wehrung, P. Albrecht, in Proc. 18th International Meeting on Organic Geochemistry 1997, Maastricht, the Netherlands, Abstracts Part I (1997b), pp. 57–58 Google Scholar
  127. J. Schaeflé, B. Ludwig, P. Albrecht, G. Ourisson, Tetrahedron Lett. 41, 3673–3676 (1977) Google Scholar
  128. P. Schneckenburger, P. Adam, P. Albrecht, Tetrahedron Lett. 39, 447–450 (1998) Google Scholar
  129. S. Schouten, M.E.L. Kohnen, J.S. Sinninghe Damsté, J.W. de Leeuw, Org. Geochem. 23, 129–138 (1993) Google Scholar
  130. S. Schouten, W.C.M. Klein Breteler, P. Blokker, X. Schogt, W.I.C. Rijpstra, K. Grice, M. Baas, J.S. Sinninghe Damsté, Geochimica Cosmochimica Acta 62, 1397–1406 (1998) ADSGoogle Scholar
  131. J. Schwender, M. Seeman, H.K. Lichtenthaler, M. Rohmer, Biochem. J. 316, 73–80 (1996) Google Scholar
  132. M.A. Sephton, Botta, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9171-9 Google Scholar
  133. M.A. Sephton, I. Gilmour, Mass Spectrom. Rev. 20, 111–120 (2001) Google Scholar
  134. M.A. Sephton, C.T. Pillinger, I. Gilmour, Geochimica Cosmochimica Acta 64, 321–328 (2000) ADSGoogle Scholar
  135. M.A. Sephton, C.T. Pillinger, I. Gilmour, Planet. Space Sci. 47, 181–187 (2001) ADSGoogle Scholar
  136. M.A. Sephton, Nat. Prod. Res. 19, 292–311 (2002) Google Scholar
  137. M.A. Sephton, G.D. Love, J.S. Watson, A.B. Verchovsky, I.P. Wright, C.E. Snape, I. Gilmour, Geochimica Cosmoshimica Acta 68, 1385–1393 (2004) ADSGoogle Scholar
  138. R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds (Academic, New York, 1981) Google Scholar
  139. E.L. Shock, Orig. Life Evol. Bios. 22, 67–108 (1992) ADSGoogle Scholar
  140. E.L. Shock, Ciba Found. Symp. 202, 40–60 (1996) Google Scholar
  141. E.L. Shock, J. Geophys. Res. 102(23), 687–694 (1997) Google Scholar
  142. J.S. Sinninghe Damsté, M.P. Koopmans, Pure Appl. Chem. 69, 2067–2074 (1997) Google Scholar
  143. J.S. Sinninghe Damsté, A.C.T. van Duin, D. Hollander, M.E.L. Kohnen, J.W. de Leeuw, Geochimica Cosmochimica Acta 59, 5141–5147 (1995) ADSGoogle Scholar
  144. J.S. Sinninghe Damsté, J.W. de Leeuw, in Advances in Organic Geochemistry 1989, ed. by B. Durand, F. Behar (Pergamon, Oxford, 1990), pp. 1077–1101 Google Scholar
  145. J.G. Speight, in Caractérisation des Huiles Lourdes et des Résidus Pétroliers, ed. by B.P. Tissot. International Symposium, Lyon (Technip, Paris, 1984), pp. 32–41 Google Scholar
  146. S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell 3rd, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhofer, A.H. Knoll, H.Y. McSween Jr., R.V. Morris, J.W. Rice Jr., R. Rieder, L.A. Soderblom, Science 306, 1709–1714 (2004) ADSGoogle Scholar
  147. H. Strauss, D.J. Des Marais, J.M. Hayes, R.E. Summons, in The Proterozoic Biosphere, ed. by J.W. Schopf, C. Klein (Cambridge University Press, New York, 1992), pp. 117–127 Google Scholar
  148. O.P. Strausz, E.M. Lown, J.D. Payzant, in Geochem. of Sulfur in Fossil Fuels, ed. by W.L. Orr, C.M. White ACS Symposium Series, vol. 429 (American Chemical Society, Washington, 1990), pp. 368–396 Google Scholar
  149. R. Stribling, S.L. Miller, Orig. Life 17, 261–273 (1987) Google Scholar
  150. R.E. Summons, T.G. Powell, Geochimica Cosmochimica Acta 51, 557–566 (1987) ADSGoogle Scholar
  151. R.E. Summons, T.G. Powell, C.J. Boreham, Geochimica Cosmochimica Acta 52, 1747–1763 (1988) ADSGoogle Scholar
  152. R.E. Summons, M.R. Walter, Am. J. Sci. 290-A, 212–244 (1990) Google Scholar
  153. R.E. Summons, in The Proterozoic Biosphere, ed. by J.W. Schopf, C. Klein (Cambridge University Press, New York, 1992), pp. 101–115 Google Scholar
  154. R.E. Summons, L.L. Jahnke, Z. Roksandic, Geochimica Cosmochimica Acta 58, 2853–2863 (1994) ADSGoogle Scholar
  155. D.Y. Sumner, J. Geophys. Res. – Planets 109(12), 12007 (2004) ADSGoogle Scholar
  156. T. Takata, K. Ishibashi, W. Ando, Tetrahedron Lett. 26, 4609–4612 (1985) Google Scholar
  157. M.A. Teece, J.M. Getliff, J.W. Leftly, R.J. Parkes, J.R. Maxwell, Org. Geochem. 29, 863–880 (1998) Google Scholar
  158. E.W. Tegelaar, J.W. de Leeuw, S. Derenne, C. Largeau, Geochimica Cosmochimica Acta 53, 3103–3106 (1989) ADSGoogle Scholar
  159. W.R. Thompson, T.J. Henry, J.M. Schwartz, B.N. Khare, C. Sagan, Icarus 90, 57–73 (1991) ADSGoogle Scholar
  160. B.P. Tissot, D.H. Welte, Petroleum Formation and Occurrence (Springer, New York, 1984), 699 p. Google Scholar
  161. J.P. Tritz, D. Herrmann, P. Bisseret, J. Connan, M. Rohmer, Org. Geochem. 30, 499–514 (1999) Google Scholar
  162. J. Valisolalao, N. Perakis, B. Chappe, P. Albrecht, Tetrahedron Lett. 25, 1183–1186 (1984) Google Scholar
  163. V.V. Voronenkov, A.N. Vinogradov, V.A. Belyaev, Russ. Chem. Rev. 39, 944–952 (1970) ADSGoogle Scholar
  164. S. Wakeham, Nature 342, 787–790 (1989) ADSGoogle Scholar
  165. S.G. Wakeham, J.S. Sinninghe Damsté, M.E.L. Kohnen, J.W. de Leeuw, Geochimica Cosmochimica Acta 59, 521–533 (1995) ADSGoogle Scholar
  166. Z. Wang, M. Fingas, G. Sergy, Environ. Sci. Technol. 28, 1733–1746 (1994) Google Scholar
  167. C.D. Watts, J.R. Maxwell, Geochimica Cosmochimica Acta 41, 493–497 (1979) ADSGoogle Scholar
  168. A.L. Weber, S. Pizzarello, Proc. Nat. Acad. Sci. USA 103, 12713–12707 (2006) ADSGoogle Scholar
  169. G. Yuen, N. Blair, D.J. Des Marais, S. Chang, Nature 307, 252–254 (1984) ADSGoogle Scholar
  170. B. Zeitman, S. Chang, J.G. Lawless, Nature 251, 42–43 (1974) ADSGoogle Scholar
  171. B. Zellner, E. Bowell, in Comets–Asteroids–Meteorites, ed. by A.H. Delsemme (University of Toledo Press, Toledo, 1977), pp. 185–195 Google Scholar
  172. E. Zinner, in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 956–983 Google Scholar

Copyright information

© Springer Science+Business Media, BV 2008

Authors and Affiliations

  • Roger E. Summons
    • 1
    Email author
  • Pierre Albrecht
    • 2
  • Gene McDonald
    • 3
  • J.  Michael Moldowan
    • 4
  1. 1.Dept. Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institut de Chimie, Université Louis PasteurCNRS-UMR 7177, ECPMStrasbourg Cedex 2France
  3. 3.Dept. of Chemistry and BiochemistryUniversity of Texas at AustinAustinUSA
  4. 4.Department of Geological & Environmental SciencesStanford UniversityStanfordUSA

Personalised recommendations