Genomics Tools Across Rosaceae Species

  • Elisabeth DirlewangerEmail author
  • Béatrice Denoyes-Rothan
  • Toshiya Yamamoto
  • David Chagné
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Rosaceae geneticists and molecular biologists, whether focusing on ornamental, fruit crops or trees grown for their timber, have very similar challenges, which are to create varieties that can compete in a globalized market. Rosaceae breeders’ objectives are to improve the product quality (e.g. improved fruit quality) and productivity (e.g. improved phenology).


Linkage Group Sweet Cherry Sour Cherry Genomic SSRs Rosaceae Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott AG, Arús P, Scorza R (2007) Peach. In Kole C (ed) Genome Mapping & Molecular Breeding in Plants. Vol. 4: Fruits and Nuts, Berlin: Springer, 137–156Google Scholar
  2. Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131PubMedCrossRefGoogle Scholar
  3. Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell A (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662PubMedCrossRefGoogle Scholar
  4. Aldwinckle HS, Borejsza-Wysocka EE, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin QT (2003) Development of fire blight resistant apple cultivars by genetic engineering. Acta Hort 622:105–111Google Scholar
  5. Aranzana MJ, Abbassi EK, Howad W, Pere Arus P (2008) Estimating the extent of linkage disequilibrium in peach (Prunus persica) American and European cultivars. Plant & Animal Genomes XVI Conference, San Diego, CA, January 12–16Google Scholar
  6. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 992:1353–1355CrossRefGoogle Scholar
  7. Arumuganathan K and Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218CrossRefGoogle Scholar
  8. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. Plant Breeding Reviews, Vol 27, Ed Janick J. London: John Wiley and Sons Inc. 175–211Google Scholar
  9. Ashley MV, Wilk JA, Styan SMN,. Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL (2003) High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor App Genet 107:1201–1207CrossRefGoogle Scholar
  10. Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene Theor Appl Genet 101:962–969CrossRefGoogle Scholar
  11. Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Res Crop Evol 54: 959–971CrossRefGoogle Scholar
  12. Bassil NV, Gunn M, Folta K, Lewers KS (2006a) Microsatellite markers for Fragaria from ‘Strawberry Festival’ expressed sequence tags. Mol Ecol Notes 6(2): 473–476Google Scholar
  13. Bassil NV, Njuguna W, Slovin JP (2006b). EST-SSR markers from Fragaria vesca L. cv. yellow wonder. Mol Ecol Notes 6(3):806–809Google Scholar
  14. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci 101:886–890PubMedCrossRefGoogle Scholar
  15. Bennett, MD (2004) Perspectives on polyploidy in plants – ancient and neo. Biol. J. Linn Soc. 82: 411–423CrossRefGoogle Scholar
  16. Bennett MD, Leitch IJ (2004) Plant DNA C-values database (release 5.0, Dec. 2004,
  17. Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in arabidopsis to be ∼157 Mb and thus ∼25 % larger than the Arabidopsis genome initiative estimate of ∼125 Mb. Ann Bot 91: 547–557PubMedCrossRefGoogle Scholar
  18. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond 274:227–274CrossRefGoogle Scholar
  19. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond 334:309–345CrossRefGoogle Scholar
  20. Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond 216:179–199Google Scholar
  21. Casado-Diaz A, Encinas-Villarejo S, de los Santos B, Schiliro E, Yubero-Serrano EM, Amil-Ruiz F, Pocovi MI, Pliego-Alfaro F, Dorado G, Rey M, Romero F, Munoz-Blanco J, Caballero JL (2006) Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum 128: 633–650CrossRefGoogle Scholar
  22. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138 1251–1274PubMedGoogle Scholar
  23. Celton J-M, Tustin DS, Chagné D, Gardiner SE (2008) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus, Tree Gene Genomes, in pressGoogle Scholar
  24. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212PubMedCrossRefGoogle Scholar
  25. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedCrossRefGoogle Scholar
  26. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): Isolation, characterisation and cross-species amplification in Prunus. Theor App Genet 99:65–72CrossRefGoogle Scholar
  27. Cipriani G, Testolin R (2004) Isolation and characterization of microsatellite loci in Fragaria. Mol Ecol Notes 4(3): 366–368CrossRefGoogle Scholar
  28. Crowhurst RN, Allan AC, Atkinson RG, Beuning LL, Davey M, Friel E, Gardiner SE Gleave AP, Greenwood DR, Hellens RP, Janssen BJ, Kutty-Amma S, Laing WA, MacRae EA, Newcomb RD, Plummer KM, Schaffer R, Simpson RM, Snowden KC, Templeton MD, Walton EF, Rikkerink EHA (2005) The HortResearch apple EST database – a resource for apple genetics and functional genomics. In: Plant & Animal Genome XIII Conference, San Diego, CA, USAGoogle Scholar
  29. Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384CrossRefGoogle Scholar
  30. Da Silva J, Honeycutt R, Burnquist W, Al-Janabi SM, Sorells ME, Tanksley SD, Sobral WS (1995) Saccharum spontaneum L. ‘‘SES 208’’ genetic linkage map combining RFLP- and PCRbased markers. Mol Breed 1: 165–179CrossRefGoogle Scholar
  31. Davis TM, DiMeglio LM, Yang RH, Styan SMN, Lewers KS (2006) Assessment of SSR marker transfer from the cultivated strawberry to diploid strawberry species: Functionality, linkage group assignment, and use in diversity analysis. J Am Soc Hort Sci 131:506–512Google Scholar
  32. Davis TM, Folta KM, Shields M, and Zhang Q (2008) Gene pair markers: An innovative tool for comparative linkage mapping. In Proceedings of 6th North American Strawberry Symposium., p (In Press)Google Scholar
  33. Denoyes-Rothan B, Rousseau M, Barrot L, Lerceteau-Köhler E, Sargent D, Simpson D, Monfort A, Arus P, Guerin G (2006). Comparative linkage maps of two levels of Ploidy in Fragaria. Plant and Animal Genome XIV (San Diego 15–20 January 2006)Google Scholar
  34. Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79: 1081–1086CrossRefGoogle Scholar
  35. Dirlewanger E, Cosson P, Howad W, Capdevill G, Bosselu N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838Google Scholar
  36. Dirlewanger E, Cosson P, Poizat C, Laigret F, Aranzana MJ, Arus P, Dettori MT, Verde I, Quarta R (2003) Synteny within the Prunus genomes detected by molecular markers. 26th International Horticultural Congress & Exhibition (IHC2002), Toronto, USA, 11–17 août 2002. Acta Hort 622:177–187Google Scholar
  37. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004b) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci 101:9891–9896Google Scholar
  38. Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S (2003) Plant genome archaeology: Evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1:91–99PubMedCrossRefGoogle Scholar
  39. Espley RV, Hellens RP, Puterill J, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of a MYB transcription factor, MdMYB10. Plant J 49:414–427PubMedCrossRefGoogle Scholar
  40. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Posaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484CrossRefGoogle Scholar
  41. Folta KM, Davis T (2006) Strawberry genes and genetics. Crit Rev Plant Sci 25: 399–415CrossRefGoogle Scholar
  42. Folta KM, Dhingra A (2006) Transformation of strawberry: The basis for translational genomics in Rosaceae. In Vitro Cell Dev Biol Plant 42:482–490CrossRefGoogle Scholar
  43. Folta K, Dhingra A, Howard L, Stewart PJ, Chandler CK (2006) Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224:1058–1067PubMedCrossRefGoogle Scholar
  44. Folta K, Staton M, Stewart PJ, Jung S, Bies DH, Jesdurai C, Main D (2005) Expressed sequence tags (ESTs) and simple sequence repeat (SSR) markers from octoploid strawberry (Fragaria × ananassa).BMC Plant Biol 5:12PubMedCrossRefGoogle Scholar
  45. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: Consistency across generations and environments. Mol Breed 12:33–50CrossRefGoogle Scholar
  46. Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243PubMedCrossRefGoogle Scholar
  47. The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–468CrossRefGoogle Scholar
  48. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467PubMedCrossRefGoogle Scholar
  49. Georgi LL, Wang Y, Reighard GL, Mao L, Wing RA, Abbott AG (2003) Comparison of peach and Arabidopsis genomic sequences: Fragmentary conservation of gene neighborhoods. Genome 46:268–276PubMedCrossRefGoogle Scholar
  50. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158PubMedCrossRefGoogle Scholar
  51. Gil-Ariza DJ, Amaya I, Botella MA, Blanco JM, Caballero JL, Lopez-Aranda JM, Valpuesta V, Sanchez-Sevilla JF (2006) EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria x ananassa) are useful for diversity studies and varietal identification among Fragaria species. Mol Ecol Notes 6(4):1195–1197CrossRefGoogle Scholar
  52. Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg WE, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369PubMedCrossRefGoogle Scholar
  53. Graham J, Smith K, Woodhead M, Russell J (2002) Development and use of simple sequence repeat SSR markers in Rubus species. Mol Ecol Notes 2(3):250–252CrossRefGoogle Scholar
  54. Grimplet J, Romieu C, Audergon JM, Marty I, Albagnac G, Lambert P, Bouchet JP, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13 006 expressed sequence tags. Physiologia Plantarum 125:281–292CrossRefGoogle Scholar
  55. Hadonou AM, Sargent DJ, Wilson F, James CM, Simpson DW (2004) Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome 47:429–438PubMedCrossRefGoogle Scholar
  56. Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637PubMedCrossRefGoogle Scholar
  57. Han Y, Korban SS (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581–588PubMedCrossRefGoogle Scholar
  58. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL flowering traits. Tree Gene Genomes 4:11–23CrossRefGoogle Scholar
  59. Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Cha H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428PubMedCrossRefGoogle Scholar
  60. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: Using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  61. James CM, Wilson F, Hadonou AM, Tobutt KR (2003). Isolation and characterization of polymorphic microsatellites in diploid strawberry (Fragaria vesca L.) for mapping, diversity studies and clone identification. Mol Ecol Notes 3(2):171–173CrossRefGoogle Scholar
  62. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176CrossRefGoogle Scholar
  63. Joobeur T, Periam N, de Vicente MC, King GJ, Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655PubMedCrossRefGoogle Scholar
  64. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  65. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): Integrated web resources for Rosaceae genomics and genetics research, BMC Bioinform. 5:130CrossRefGoogle Scholar
  66. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes BMC Genomics 7:81PubMedCrossRefGoogle Scholar
  67. Jung S, Staton M, Lee M, Blenda A, Svancara R, Abbott A and Main D (2008) GDR (Genome Database for Rosaceae): Integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36 (Database issue):D1034–D1040PubMedCrossRefGoogle Scholar
  68. Keith AL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141CrossRefGoogle Scholar
  69. Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O′connor K, Prabhu AL, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJ, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE. (2007) A physical map of the highly heterozygous Populus genome: Integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J 50:1063–1078PubMedCrossRefGoogle Scholar
  70. Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T (1995) Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res 23: 2729–2733PubMedCrossRefGoogle Scholar
  71. Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121CrossRefGoogle Scholar
  72. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: Progress toward a sorghum genome map. Genome Res. 10:789–807PubMedCrossRefGoogle Scholar
  73. Korban SS, Vokin LO, Liu L, Aldwinckle HS, Ksenija GS, Gasic K, Orlando-Gonzales D, Malnoy M, Thimmapuram J, Caroll NJ, Golsborough P, Orvis K, Clifton S, Pape D, Martin M, Meyer R (2005) Large-scale analyses of EST sequences in apple genome. In: Plant & Animal Genome XIII Conference, January, San Diego, CA, USA:
  74. Kovanda M (1965) On the generic concepts in the Maloideae. Preslia (Praha) 37:27–34Google Scholar
  75. Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ x peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130PubMedCrossRefGoogle Scholar
  76. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi J, Pozzi C (2005) ESTree db: A tool for peach functional genomics. BMC Bioinformatics 6: S16PubMedCrossRefGoogle Scholar
  77. Lerceteau-Kohler E, Guerin G, Laigret F, Denoyes-Rothan B (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria x ananassa) using AFLP mapping. Theor App Genet 107:619–628CrossRefGoogle Scholar
  78. Lewers KS, Saski CA, Cuthbertson BJ, Henry DC, Staton ME, Main DS, Dhanaraj AL, Rowland LJ, Tomkins JP (2008) A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers. BMC Plant Biol, 8:69 doi:10.1186/1471-2229-8-69PubMedCrossRefGoogle Scholar
  79. Lewers KS, Styan SMN, Hokanson SC, Bassil NV (2005). Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hort Sci 130:102–115Google Scholar
  80. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10: 217–241CrossRefGoogle Scholar
  81. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  82. Lopes MS, Maciel G, Mendonca D, Gil FS, Machado ADC (2006) Isolation and characterization of simple sequence repeat loci in Rubus hochstetterorum and their use in other species from the Rosaceae family. Mol Ecol Notes 6:750–752CrossRefGoogle Scholar
  83. Masterson J (1994) Stomatal size in fossil plants – evidence for polyploidy in majority of angiosperms. Science 264: 421–424PubMedCrossRefGoogle Scholar
  84. Morgan DR, Soltis DE, Robertson KR (1994) Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Am J Bot 81:890–903CrossRefGoogle Scholar
  85. Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 22:271–275PubMedCrossRefGoogle Scholar
  86. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross, GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCrossRefGoogle Scholar
  87. Osborn TC, Butrulle DV, Sharpe AG, Pikering KJ, Parkin AIP, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577PubMedGoogle Scholar
  88. Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230PubMedCrossRefGoogle Scholar
  89. Padilla IMG, Webb KR, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.) Plant Cell Rep 22:38–45CrossRefGoogle Scholar
  90. Paterson, AH, Bowers JE, Chapman BA, Peterson DG, Rong J, Wicker TM (2004) Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr Opin Biotechnol 15(2):120–125PubMedCrossRefGoogle Scholar
  91. Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141(3): 811–824PubMedCrossRefGoogle Scholar
  92. Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109: 1519–1524PubMedCrossRefGoogle Scholar
  93. Rikkerink E, Hilario E, Rusholme R, Gardiner S, Bus V, Gleave A, Crowhurst R (2003) Mining the HortResearch apple EST database- in silico tissue expression analyses of resistance gene candidates and resistance gene classes. Plant & Animal Genomes XI Conference. January 11–15, 2003Google Scholar
  94. Rousseau M, Hibrand Saint Oyant L, Foucher F, Barrot L, Lalanne D, Sargent D, Simpson D, Laigret Fand, Denoyes-Rothan B (2006) Comparative mapping in the Rosoideae tribe: Rosa and Fragaria. 3rd Internation Rosaceae Genomic Conference. Napier, New Zealand March 2006Google Scholar
  95. Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent D, Monfort A, Simpson D, Arùs P, Guérin G, Denoyes-Rothan B (2008) Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics (in press)Google Scholar
  96. Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arus P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor App Genet 112:1349–1359CrossRefGoogle Scholar
  97. Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor App Genet 109:1385–1391CrossRefGoogle Scholar
  98. Sargent DJ, Hadonou AM, Simpson DW (2003) Development and characterization of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Mol Ecol Notes 3(4):550–552CrossRefGoogle Scholar
  99. Sax K (1931) The origins and relationships of the Pomoideae. J. Arnold Arbor. 12: 3–22Google Scholar
  100. Sax K (1932) Chromosome relationships in the Pomoideae. J. Arnold Arbor. 13: 363–367Google Scholar
  101. Schmidt R. (2002) Plant genome evolution: Pessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37PubMedCrossRefGoogle Scholar
  102. Scorza R, Hammerschlag F (1992) Emerging technologies for the genetic improvement of stone fruit. In Hammerschlag FA, Litz RE (eds) Biotechnology of perennial Fruit Crops. CABI, Wallingford, Oxon, pp 277–302Google Scholar
  103. Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A Genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway([w]). Plant Physiol.144: 1899–1912PubMedCrossRefGoogle Scholar
  104. Shaked H, Kashkush K, Ozkan H, Feldman M, Lev AA (2001). Sequence elimination and cytosine methylation are rapid and reproductible responses of the genome to wide hybridization and allopolyploidy in wheat. The Plant Cell 13: 1749–1759PubMedCrossRefGoogle Scholar
  105. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers KS, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Phy Rev DOI:10.1104/107.115618Google Scholar
  106. Silfverberg-Dilworth E, Matasci CL, Van de We E, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomics 2: 202–224CrossRefGoogle Scholar
  107. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81PubMedCrossRefGoogle Scholar
  108. Sorrells, ME (1992) Development and application of RFLPs in polyploids. Crop Sci 32: 1086–1091CrossRefGoogle Scholar
  109. Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavour. FEBS J 272(12): 3132–3144PubMedCrossRefGoogle Scholar
  110. Srinivasan C, Scorza R (1999) Transformation of somatic embryos of trees and pravine. In Jain SM, Gupta PK, Newton NJ (eds) Somatic Embryogenesis in Woody Plants. Kluwer Acad Press, London, Vol. 5, pp 313–330Google Scholar
  111. Srinivasan C, Scorza R (2005) The influence of genotype on the induction of somatic embryos from in vitro cultured zygotic embryos and adventitious shoot regeneration from cotyledons of peach and nectarine. Acta Hort 738: 512–542Google Scholar
  112. Stafne ET, Clark JR, Weber CA, Graham J, Lewers KS (2005). Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J Am Soc Hor Sci 130:722–728Google Scholar
  113. Tatum TC, Stepanovic S, Biradar DP, Lane Rayburn A, Korban SS (2005) variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930PubMedGoogle Scholar
  114. Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2005) The use of microarray mPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci 170:606–613CrossRefGoogle Scholar
  115. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, ScheinJ, SterckL, Aerts A, Bhalerao RR, Bhalerao, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson JRP, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  116. Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14(7):1441–1456PubMedCrossRefGoogle Scholar
  117. Vilanova S, Sargent DJ, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry) BMC Plant Biol 8:67PubMedCrossRefGoogle Scholar
  118. Wang Y, Georgi LL, Zhebentyayeva TN, Reighart GL, Scorza R, Abbott AG (2002) High-throughput targeted SSR marker development in peach (Prunus persica), Genome 45:319–328PubMedCrossRefGoogle Scholar
  119. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249PubMedCrossRefGoogle Scholar
  120. The Welcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  121. Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang H-B (2004) A BAC- and BIBAC-based physical map of the soybean genome, Genome 14:319–326CrossRefGoogle Scholar
  122. Xu M, Korban SS, Song J, Jiang J (2002) Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush, Acta Hort 595:103–112Google Scholar
  123. Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113PubMedCrossRefGoogle Scholar
  124. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102: 865–870CrossRefGoogle Scholar
  125. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002) Development of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2: 14–16CrossRefGoogle Scholar
  126. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004a). Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663: 51–56Google Scholar
  127. Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004b) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci.54: 239–244Google Scholar
  128. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSRs and AFLPs. Breed. Sci 57:321–329CrossRefGoogle Scholar
  129. Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006). Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci 131:380–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elisabeth Dirlewanger
    • 1
    Email author
  • Béatrice Denoyes-Rothan
    • 1
  • Toshiya Yamamoto
    • 1
  • David Chagné
    • 1
  1. 1.Institut National de la Recherche Agronomique, Centre de Bordeaux, Unité de Recherches sur les Espèces FruitièresVillenave d’Ornon CedexFrance

Personalised recommendations