Rose Structural Genomics

  • David H. Byrne
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The development of SSRs designed for rose has accelerated in the last several years and is now a focal point of the map development especially as we move towards developing a consensus map to combine the mapping data from the various maps that have been developed. In the past 5 years, there have been reports from Europe (Esselink et al., 2003; Debener, personal communication; Yan et al., 2005a; Hibrand-Saint Oyant et al., 2007), the USA (Zhang et al., 2006), and Japan (Kimura et al., 2006) describing the development of both genomic (256 primer pairs) and EST (44 primer pairs) based microsatellites.


Linkage Group Powdery Mildew Powdery Mildew Resistance Resistance Gene Analogue Double Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albani, M.C., Battey, N.H., and Wilkinson, M.J. (2004). The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theoretical and Applied Genetics 109, 571–579.CrossRefPubMedGoogle Scholar
  2. Arus, P., Yamamoto, T., Dirlewanger, E., and Abbott, A.G. (2006). Synteny in the Rosaceae. Plant Breeding Reviews 27, 175–211.Google Scholar
  3. Atkiss, L. (1978). Disease resistant rose varieties. American Rose Annual 63, 99–104.Google Scholar
  4. Babaei, A., Tabaei-Aghdaei, S.R., Khosh-Khui, M., Omidbaigi, R., Naghavi, M.R., Esselink, G.D., and Smulders, M.J.M. (2007). Microsatellite analysis of Damask rose (Rosa damascena Mill.) accessions from various regions in Iran reveals multiple genotypes. BMC Plant Biology 7, (8 March 2007).Google Scholar
  5. Baydar, N.G., Baydar, H., and Debener, T. (2004). Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers. Journal of Biotechnology 111, 263–267.CrossRefPubMedGoogle Scholar
  6. Benedetti, L.d., Mercuri, A., Bruna, S., Burchi, G., and Schiva, T. (2001). Genotype identification of ornamental species by RAPD analysis. Acta Horticulturae 546, 391–394.Google Scholar
  7. Burrell, A.M., Lineberger, R.D., Rathore, K.S., and Byrne, D.H. (2006). Genetic variation in somatic embryogenesis of rose. HortScience 41, 1165–1168.Google Scholar
  8. Byrne, D.H. (2007). Molecular marker use in perennial plant breeding in fruit and ornamental crops. Acta Horticulturae, in press.Google Scholar
  9. Carlson-Nilsson, B.U. (2000). Resistance to Marssonina rosae in Rosa L. seedlings obtained from controlled crosses including germplasm L83. Acta Agriculturae Scandinavica. Section B, Soil and Plant Science 50, 176–182.Google Scholar
  10. Cherri-Martin, M., Jullien, F., Heizmann, P., and Baudino, S. (2007). Fragrance heritability in Hybrid Tea roses. Scientia Horticulturae 113, 177–181.CrossRefGoogle Scholar
  11. Crespel, L., Zhang, D., Meynet, J., and Gudin, S. (2001). Estimation of heterozygosity in two botanic rose species using AFLP markers. Acta Horticulturae 546, 187–191.Google Scholar
  12. Crespel, L., Chirollet, M., Durel, C.E., Zhang, D., Meynet, J., and Gudin, S. (2002). Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theoretical and Applied Genetics 105, 1207–1214.CrossRefPubMedGoogle Scholar
  13. Davis, T.M., Folta, K.M., Shields, Z., and Zhang, Q. (2007). Gene Pair Markers: An Innovative Tool for Comparative Linkage Mapping. In Proceedings 6th North American Strawberry Symposium, pp. in press.Google Scholar
  14. Debener, T. (1999). Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64, 14–20.Google Scholar
  15. Debener, T., and Mattiesch, L. (1999). Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theoretical and Applied Genetics 99, 891–899.CrossRefGoogle Scholar
  16. Debener, T., Bartels, C., and Mattiesch, L. (1996). RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Molecular Breeding 2, 321–327.CrossRefGoogle Scholar
  17. Debener, T., Bartels, C., and Spethmann, W. (1997). Parentage analysis in interspecific crosses between rose species with RAPD markers. Gartenbauwissenschaft 62, 180–184.Google Scholar
  18. Debener, T., Janakiram, T., and Mattiesch, L. (2000). Sports and seedlings of rose varieties analysed with molecular markers. Plant Breeding 119, 71–74.CrossRefGoogle Scholar
  19. Debener, T., Mattiesch, L., and Vosman, B. (2001). A molecular marker map for roses. Acta Horticulturae 547, 283–287.Google Scholar
  20. Debener, T., Dohm, A., and Mattiesch, L. (2003). Use of diploid self incompatible rose genotypes as a tool for gene flow analyses in roses. Plant Breeding 122, 285–287.CrossRefGoogle Scholar
  21. Dubois, L.A.M., and Vries, D.P.d. (1987). On the inheritance of the dwarf character in polyantha x Rosa chinensis minima (Sims) Voss F1-populations. Euphytica 36, 535–539.CrossRefGoogle Scholar
  22. Dugo, M.L., Satovic, Z., Millan, T., Cubero, J.I., Rubiales, D., Cabrera, A., and Torres, A.M. (2005). Genetic mapping of QTLs controlling horticultural traits in diploid roses. TAG Theoretical and Applied Genetics 111, 511–520.CrossRefGoogle Scholar
  23. Esselink, G.D., Smulders, M.J.M., and Vosman, B. (2003). Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theoretical and Applied Genetics 106, 277–286.PubMedGoogle Scholar
  24. Esselink, G.D., Nybom, H., and Vosman, B. (2004). Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theoretical and Applied Genetics 109, 402–408.CrossRefPubMedGoogle Scholar
  25. Fang, J., Devanand, P.S., and Chao, C.T. (2005). Practical strategy for identification of single nucleotde polymorphisms in fruiting mei (Prunus mume Sied. et Zucc.) from amplified fragment lenght polymorphism fragments. Plant Molecular Biology 23, 227–239.CrossRefGoogle Scholar
  26. Ferrero, F., Cadour-Marvaldi, P., Guilotea, E., Jacob, Y., Coudret, A., and Sallanon, H. (2001). Evaluation of the resistance to powdery mildew, Sphaerotheca pannosa var. rosae, of rose-tree species and hybrids. B. First exploration of the resistance biodiversity in a crossing program resistance. Acta Horticulturae 547, 379–381.Google Scholar
  27. Fulton, T.M., Hoeven, R.v.d., Eannetta, N.T., and Tanksley, S.D. (2002). Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14, 1457–1467.CrossRefPubMedGoogle Scholar
  28. Gallego, F.J., and Martinez, I. (1996). Molecular typing of rose cultivars using RAPDs. Journal of Horticultural Science 71, 901–908.Google Scholar
  29. Grattapaglia, D., and Sederoff, R. (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121–1137.PubMedGoogle Scholar
  30. Hattendorf, A., and Debener, T. (2007a). NBS-LRR-RGAs in roses: Diversity, genomic organization, expression and chromosomal location. Acta Horticulturae, in press.Google Scholar
  31. Hattendorf, A., and Debener, T. (2007b). Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiologia Plantarum 129, 775–786.Google Scholar
  32. Hess, G., Scheuring, D., Byrne, D.H., and Zhang, D. (2007). Towards positional cloning of the everblooming gene in plants: A BAC library of Rosa chinensis cv. Old Blush. Acta Horticulturae, in press.Google Scholar
  33. Hibrand-Saint Oyant, L., Crespel, L., Zhang, L., Rajapakse, S., and Foucher, F. (2007). Genetic linkage map of Rose with new microsatellite markers to identify QTL controlling flowering traits. Tree Genetics and Genomes, accepted.Google Scholar
  34. Hurst, C.C. (1941). Notes on the origin and evolution of our garden roses. Journal of Royal Horticultural Society 66, 73–82.Google Scholar
  35. Iwata, H., Kato, T., and Ohno, S. (2000). Triparental origin of Damask roses. Gene 259, 53–59.CrossRefPubMedGoogle Scholar
  36. Jones, C.J., Edwards, K.J., Castaglione, S., Winfield, M.O., Sala, F., Wiel, C.v.d., Bredemeijer, G., Vosman, B., Matthes, M., Daly, A., Brettschneider, R., Bettini, P., Buiatti, M., Maestri, E., Malcevschi, A., Marmiroli, N., Aert, R., Volckaert, G., Rueda, J., Linacero, R., Vazquez, A., and Karp, A. (1997). Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3, 381–390.CrossRefGoogle Scholar
  37. Karam, F.H., and Sullivan, J.A. (1991). A rapid method for detection of cold hardiness in roses. HortScience 26, 59–60.Google Scholar
  38. Kaufmann, H., Mattiesch, L., Lorz, H., and Debener, T. (2003). Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Molecular Genetics and Genomics 268, 666–674.PubMedGoogle Scholar
  39. Kiani, M., Zamani, Z., Khalighi, A., Fatahi, R., and Byrne, D.H. (2007). Wild genetic diversity of Rosa damascena Mill. germplasm in Iran revealed by RAPD analysis. Scientia Horticulturae, in press.Google Scholar
  40. Kimura, T., Nishitani, C., Iketani, H., Ban, Y., and Yamamoto, T. (2006). Development of microsatellite markers in rose. Molecular Ecology Notes 6, 810–812.CrossRefGoogle Scholar
  41. Koopman, W.J.M., Vosman, B., Sabatino, G.J.H., Visser, D., Van Huylenbroeck, J., De Riek, J., De Cock, K., Wisseman, V., Ritz, C.M., Maes, B., Werlemark, G., Nybom, H., Debener, T., Linde, M., and Smulders, M.J.M. (manuscript submitted). AFLP markers as a tool to reconstruct complex relationships in the genus Rosa (Rosaceae).Google Scholar
  42. Krüssmann, G. (1981). The complete book of roses. (Portland, Ore.: Timber Press).Google Scholar
  43. Lal, S.D., Seth, J.N., Yadav, J.P., and Danu, N.S. (1982). Genetic variability and correlation studies in rose. I. Phenotypic variability, heritability and genetic advance. Progressive Horticulture 14, 234–236.Google Scholar
  44. Lammerts, W.E. (1945). The scientific basis of rose breeding. American Rose Annual 30, 70–79.Google Scholar
  45. Lammerts, W.E. (1960). Inheritence of magenta color in roses. American Rose Annual 45, 119–125.Google Scholar
  46. Lammerts, W.E. (1964). Inheritance of the scarlet-vermillon signal red colors. American Rose Annual 49, 167–172.Google Scholar
  47. Lehmushovi, A. (1987). Rose varieties in the experimental filed 1981–1984. Annales Agriculturae Fenniae 26, 4.Google Scholar
  48. Lewis, W.H., and Basye, R.E. (1961). Analysis of nine crosses between diploid Rosa species. Proceedings of the American Society for Horticultural Science 78, 572–579.Google Scholar
  49. Lim, Y.K., and Knight, V.H. (2000). The successful transfer of primocane fruiting expression from raspberry to Rubus hybrid berry. Euphytica 116, 257–263.CrossRefGoogle Scholar
  50. Linde, M., and Debener, T. (2003). Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theoretical and Applied Genetics 107, 256–262.CrossRefPubMedGoogle Scholar
  51. Linde, M., Mattiesch, L., and Debener, T. (2004). Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theoretical and Applied Genetics 109, 1261–1266.CrossRefPubMedGoogle Scholar
  52. Linde, M., Hattendorf, A., Kaufmann, H., and Debener, T. (2006). Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. TAG Theoretical and Applied Genetics 113, 1081–1092.CrossRefGoogle Scholar
  53. Lopez-Medina, J., and Moore, J.N. (1999). Chilling enhances cane elongation and flowering in primocane-fruiting blackberries. HortScience 34, 638–640.Google Scholar
  54. Mackay, I., and Powell, W. (2007). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12, 57–63.CrossRefPubMedGoogle Scholar
  55. Malek, B.v., and Debener, T. (1998). Genetic analysis of resistance to blackspot (Diplocarpon rosae) in tetraploid roses. Theoretical and Applied Genetics 96, 228–231.CrossRefGoogle Scholar
  56. Malek, B.v., Weber, W.E., and Debener, T. (2000). Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in roses. Theoretical and Applied Genetics 101, 977–983.CrossRefGoogle Scholar
  57. Marshall, H.H., Campbell, C.G., and Collicutt, L.M. (1983). Breeding for anthocyanin colors in Rosa. Euphytica 32, 205–216.CrossRefGoogle Scholar
  58. Matsumoto, S., and Fukui, H. (1996). Identification of rose cultivars and clonal plants by random amplified polymorphic DNA. Scientia Horticulturae 67, 49–54.CrossRefGoogle Scholar
  59. Mence, M.J., and Hildebrandt, A.C. (1966). Resistance to powdery mildew in rose. Annals of Applied Biology 58, 309–320.CrossRefGoogle Scholar
  60. Millan, T., Osuna, F., Cobos, S., Torres, A.M., and Cubero, J.I. (1996). Using RAPDs to study phylogenetic relationships in Rosa. Theoretical and Applied Genetics 92, 273–277.CrossRefGoogle Scholar
  61. Mohapatra, A., and Rout, G.R. (2005). Identification and analysis of genetic variation among rose cultivars using random amplified polymorphic DNA. Zeitschrift fur Naturforschung 60, 611–617.PubMedGoogle Scholar
  62. Morey, D. (1954). Observation on the genetics of the mutant climbing factor in hybrid tea roses. American Rose Annual 39, 89–97.Google Scholar
  63. Nybom, H., Esselink, G.D., Werlemark, G., and Vosman, B. (2004). Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. sect. Caninae DC. Heredity 92, 139–150.CrossRefGoogle Scholar
  64. Nybom, H., Esselink, G.D., Werlemark, G., Leus, L., and Vosman, B. (2006). Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. Journal of Evolutionary Biology 19, 635–648.CrossRefPubMedGoogle Scholar
  65. Olsson, A., Nybom, H., and Prentice, H.C. (2000). Relationships between Nordic dogroses (Rosa L. sect. Caninae, Rosaceae) assessed by RAPDs and elliptic Fourier analysis of leaflet shape. Systematic Botany 25, 511–521.CrossRefGoogle Scholar
  66. Rajapakse, S., Byrne, D.H., Zhang, L., and erson, N., Arumuganathan, K., and Ballard, R.E. (2001). Two genetic linkage maps of tetraploid roses. Theoretical and Applied Genetics 103, 575–583.CrossRefGoogle Scholar
  67. Rousseau, M., Hibrand-Saint Oyant, L., Foucher, F., Barrot, L., Lalanne, L., Sargent, D., Simpson, D., Laigret, F., and Desnoyes-Rothan, B. (2006). Comparative mapping in the Rosoideae tribe: Rosa and Fragaria. Napier, NZ.Google Scholar
  68. Rusanov, K., Kovacheva, N., Vosman, B., Zhang, L., Rajapakse, S., Atanassov, A., and Atanassov, I. (2005). Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. TAG Theoretical and Applied Genetics 111, 804–809.CrossRefGoogle Scholar
  69. Scariot, V., Akkak, A., and Botta, R. (2006). Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. Journal of the American Society for Horticultural Science 131, 66–73.Google Scholar
  70. Semeniuck, P. (1971a). Inheritance of recurrent blooming in Rosa wichuraiana. The Journal of Heridity 62.Google Scholar
  71. Semeniuck, P. (1971b). Inheritance of recurrent and non recurrent in ‘Goldilocks’ x Rosa wichuraiana progeny. The Journal of Heridity 62.Google Scholar
  72. Shupert, D.A., Byrne, D.H., and Pemberton, H.B. (2007). The inheritance of flower traits, leaflet number and prickles in rose. Acta Horticulturae, in press.Google Scholar
  73. Svejda, F. (1977a). Breeding for improvement of flowering attributes of winterhardy Rosa rugosa hybrids. Euphytica 26, 697–701.Google Scholar
  74. Svejda, F. (1977b). Breeding for improvement of flowering attributes of winterhardy Rosa kordesii Wulff hybrids. Euphytica 26, 703–708.Google Scholar
  75. Svejda, F. (1979). Inheritance of winterhardiness in roses. Euphytica 28, 309–314.CrossRefGoogle Scholar
  76. Tabaei-Aghdaei, S.R., Monfared, H.H., Fahimi, H., Ebrahimzade, H., Jebelly, M., Naghavi, M.R., and Babaei, A. (2006). Genetic variation analysis of different populations of Rosa damascena in NW. Iran using RAPD markers. Iranian Journal of Botany 12, 121–127.Google Scholar
  77. Torres, A.M., Millan, T., and Cubero, J.I. (1993). Identifying rose cultivars using random amplified polymorphic DNA markers. HortScience 28, 333–334.Google Scholar
  78. Vainstein, A., Zamir, D., and Weiss, D. (2003). Fragrance and pigments/Functional genomics. In Encyclopedia of rose science, A.V. Roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 263–265.Google Scholar
  79. Verhoeven, H.A., Blass, J., and Brandenbourg, W.A. (2003). Fragrance profiles of wild and cultivated roses. In Encyclopedia of rose science, A.V. Roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 240–248.Google Scholar
  80. Vosman, B., Visser, D., Voort, J.R.v.d., Smulders, M.J.M., and Eeuwijk, F.v. (2004). The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theoretical and Applied Genetics 109, 1718–1725.CrossRefPubMedGoogle Scholar
  81. Vries, D.P.d., and Dubois, L.A.M. (1978). On the transmission of the yellow flower colour from Rosa foetida to recurrent flowering hybrid tea-roses. Euphytica 27, 205–210.CrossRefGoogle Scholar
  82. Vries, D.P.d., and Dubois, L.A.M. (1984). Inheritance of the recurrent flowering and moss characters in F1 and F2 hybrid tea x R. centifolia muscosa (Aiton) Seringe populations. Gartenbauwissenschaft 49, 97–100.Google Scholar
  83. Vries, D.P.d., Garretsen, F., Dubois, L.A.M., and Keulen, H.A.v. (1980). Breeding research on rose pigments. II. Combining ability analyses of variance of four flavonoids in F1 populations. Euphytica 29, 115–120.CrossRefGoogle Scholar
  84. Walker, C.A., Jr., and Werner, D.J. (1997). Isozyme and randomly amplified polymorphic DNA (RAPD) analyses of Cherokee rose and its putative hybrids ‘Silver Moon’ and ‘Anemone’. Journal of the American Society for Horticultural Science 122, 659–664.Google Scholar
  85. Wang, D., Fan, J., and Ranu, R.S. (2004a). Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa x hybrida). Plant Cell Reports 22, 422–429.Google Scholar
  86. Wang, X., Jacob, Y., Mastrantuono, S., Bazzano, J., Voisin, R., and Esmenjaud, D. (2004b). Spectrum and inheritance of resistance to the root-knot nematode Meloidogyne hapla in Rosa multiflora and R. indica. Plant Breeding 123, 79–83.Google Scholar
  87. Wen, X.P., and Deng, X.X. (2005). Micropropagation of chestnut rose (Rosa roxburghii Tratt) and assessment of genetic stability in in vitro plants using RAPD and AFLP markers. Journal of Horticultural Science and Biotechnology 80, 54–60.Google Scholar
  88. Wenefrida, I., and Spencer, J.A. (1993). Marssonia rosae variants in Mississippi and their virulence on selected rose cultivars. Plant Disease 77, 246–248.CrossRefGoogle Scholar
  89. Werlemark, G., Uggla, M., and Nybom, H. (1999). Morphological and RAPD markers show a highly skewed distribution in a pair of reciprocal crosses between hemisexual dog rose species, Rosa sect. Caninae. Theoretical and Applied Genetics 98, 557–563.CrossRefGoogle Scholar
  90. Xu, Q., Wen, X., and Deng, X. (2005). Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). TAG Theoretical and Applied Genetics 111, 819–830.CrossRefGoogle Scholar
  91. Xu, Q., Wen, X., and Deng, X. (2007). Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding 19, 179–191.CrossRefGoogle Scholar
  92. Yan, Z., Bai, Y., and Silva, J.A.T.d. (2006). Molecular markers and their use in genetic studies in rose. In Floriculture, ornamental and plant biotechnology, pp. 498–503.Google Scholar
  93. Yan, Z., Visser, P.B., Hendriks, T., Prins, T.W., Stam, P., and Dolstra, O. (2007). QTL analysis of variation for vigour in rose. Euphytica 154, 53–62.CrossRefGoogle Scholar
  94. Yan, Z., Denneboom, C., Hattendorf, A., Dolstra, O., Debener, T., Stam, P., and Visser, P.B. (2005a). Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. TAG Theoretical and Applied Genetics 110, 766–777.Google Scholar
  95. Yan, Z.F., Dolstra, O., Hendriks, T., Prins, T.W., Stam, P., and Visser, P.B. (2005b). Vigour evaluation for genetics and breeding in rose. Euphytica 145, 339–347.Google Scholar
  96. Zhang, D., Besse, C., Cao, M.Q., and Gandelin, M.H. (2001). Evaluation of AFLPS for variety identification in modern rose (Rosa hybrida L.). Acta Horticulturae 546, 351–357.Google Scholar
  97. Zhang, L.H. (2003). Genetic linkage map in tetraploid and diploid rose (Clemson, SC: Clemson University).Google Scholar
  98. Zhang, L.H., Byrne, D.H., Ballard, R.E., and Rajapakse, S. (2006). Microsatellite marker development in rose and its application in tetraploid mapping. Journal of the American Society for Horticultural Science 131, 380–387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David H. Byrne
    • 1
  1. 1.Horticultural Sciences DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations