Functional Genomics in Peach

  • Albert G. Abbott
  • Bryon Sosinski
  • Ariel Orellana
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The importance of high-quality fruit, and the intrinsic difficulties of breeding in a perennial species, requires the development and application of structural and functional genomics databases for the sustained improvement of fruit tree crops. Identification and characterization of genes controlling the genetic basis of the traits, and their tagging with molecular markers, permits a more realistic estimate of the effort needed to complete the introgression and to produce a new variety combining the best of traits formerly isolated in separate varieties. It also reduces effort and time, and improves the accuracy of marker-assisted selections. Thus, field evaluation is limited to trees containing the genes of interest, significantly reducing the costs associated with maintaining undesirable trees to maturity. The ability to pre-select seedlings, using DNA based markers, for traits such as sugar and acid levels, color, firmness, and fruit size while introgressing traits, such as biotic and abiotic stress resistance from exotic germplasm, speeds the development of commercially acceptable cultivars. Having the cloned gene sequences controlling the traits of interest also provides a means to directly move the character through the use of transgenic technologies significantly reducing the breeding time required to obtain cultivars with commercially desirable qualities.


Resistance Gene Functional Genomic Resistance Gene Analogue Functional Genomic Study Prunus Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen ML, De Vos RCH, van der Voet H, Jansem RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP. 2000. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarray. Plant Cell. 12:647–661.CrossRefPubMedGoogle Scholar
  2. Aharoni A, Keizer LC, Van Den Broeck HC, Blanco-Portales R, Muñoz-Blanco J, Bois G, Smit P, De Vos RC, O'Connell AP. 2002. Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol. Jul;129(3):1019–1031.CrossRefPubMedGoogle Scholar
  3. Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ. 2004. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell. 2004 Nov;16(11):3110–3131.CrossRefPubMedGoogle Scholar
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408(6814): 796–815.CrossRefGoogle Scholar
  5. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P. 2002. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. In press, Theor Appl Genet.Google Scholar
  6. Arumuganathan K, Earle E. 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 9: 208–218.CrossRefGoogle Scholar
  7. Ashley MV, Wilk JA, Styan SM, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL. (2003). High variability and disomic segregation of  microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet. 107:1201–1207.CrossRefPubMedGoogle Scholar
  8. Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhul D, Zabeau M, Visser RG. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9: 745–753.CrossRefPubMedGoogle Scholar
  9. Baird WV, Estager AS, Wells J. 1994. Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci. 119:1312–1316.Google Scholar
  10. Bartley IM, Stoker PG, Martin ADE, Hatfield SGS, Knee M. 1985. Synthesis of aroma compounds by apples supplied with alcohols and methyl esters of fatty acids. J Sci Food Agric. 36:567–574.CrossRefGoogle Scholar
  11. Bass BL. 2000. Double-stranded RNA as a template for gene silencing. Cell. 101: 235–238.CrossRefPubMedGoogle Scholar
  12. Baulcombe DC. 1999. Fast forward genetics based on virus-induced gene silencing. Curr Op Plant Biol. 2: 109–113.CrossRefGoogle Scholar
  13. Benson L. 1979. Plant Classification, 2nd Edition. Heath and Co., Lexington, MA. 901p.Google Scholar
  14. Beruter J. 1998. Carbon partitioning in an apple mutant deficient in malic acid. Acta Hort. 466: 23–28.Google Scholar
  15. Blanke MM. 1998. Fruit photosynthesis and pome fruit quality. Acta Hort. 466:19–22.Google Scholar
  16. Bieleski RL. 1982. Sugar alcohols. In F Loewus,W Tanner, eds. Encyclopedia of plant physiology New Series Vol. 13A. Springer-Verlag, Berlin. pp 158–192.Google Scholar
  17. Bies DH, Lehner KR, Folta KM (in prep.). Green-light-specific transcriptome  modification in the etiolated seedling.Google Scholar
  18. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. 2001. Minimum information about a microarray experiment  (MIAME)—toward standards for microarray data. Nature Genet. 29.Google Scholar
  19. Bringhurst RS. 1990. Cytogenetics and evolution in American Fragaria. Hortscience. 25:879–881.Google Scholar
  20. Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM. 2004. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol. 54(4):503–517.CrossRefPubMedGoogle Scholar
  21. Chan Z, Qin G, Xu X, Li B, Tian S. 2007. Proteome approach to characterize proteins induced by antagonist yeast and Salicylic acid in peach fruit. J Proteome Res. 6: 1677–1688.CrossRefPubMedGoogle Scholar
  22. Chandler C, Albregts E, Howard C, Brecht J. 1999. ‘Sweet Charlie’ Strawberry  (Horticultural Sciences Department, Gulf Coast Research and Education Center – Bradenton, Florida).Google Scholar
  23. Chandler C, Legard D, Dunigan D, Crocker T, Sims T. 2000. 'Strawberry  Festival' strawberry. Hortscience. 35: 1366–1367.Google Scholar
  24. Chuang C, Meyerowitz E.M. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97: 4985–4990.CrossRefPubMedGoogle Scholar
  25. Churchill GA, 2002. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 32: 490–495.CrossRefPubMedGoogle Scholar
  26. Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ. 2004. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res. 13: 373–384.CrossRefGoogle Scholar
  27. Defilippi BG, Dandekar AM, Kader AA. 2004. Regulation of fruit flavor metabolites in ethylene suppressed apple fruit. J Agr Food Chem. (In Press).Google Scholar
  28. Diatchenko L, Lau Y-FC, Camplbell AP, Chenchik A, Moqadam F, Huang B, Lukyanof S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-spesific cDNA probes and libraries. Proc Natl Acad Sci USA. 93: 6025–6030.CrossRefPubMedGoogle Scholar
  29. Dixon J, Hewett EW. 2000. Factors affecting apple aroma/flavour volatile concentration: a review. New Zeal J Crop Hortic Sci. 28(3):155–173.CrossRefGoogle Scholar
  30. Ecker JR. 1995. The ethylene signal transduction pathway in plants. Science 268: 667–675.CrossRefPubMedGoogle Scholar
  31. Ecker J, Davis RW. 1987. Plant defence genes are regulated by ethylene. Proc Natl Acad Sci USA. 84: 5202–5206.CrossRefPubMedGoogle Scholar
  32. Escobar MA, Dandekar AM. 2003. Post-transcriptional gene silencing in plants. In: Non-coding RNAs: Molecular Biology and Molecular Medicine. J. Barciszewski and V.A. Erdmann (Eds). Pub: and Kluwer Academic/Plenum Publishers. pp. 129–140.Google Scholar
  33. Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM. 2001. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Nat Acad Sci USA. 98: 13437–13442.CrossRefPubMedGoogle Scholar
  34. Escobar MA, Leslie CA, McGranahan GH, Dandekar AM. 2002. Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci. 163(3): 591–597.CrossRefGoogle Scholar
  35. Escobar MA, Civerolo EL, Polito VS, Pinney KA, Dandekar AM. 2003. Characterization of oncogene-silenced transgenic plants: Implications for Agrobacterium biology and post-transcriptional gene silencing. Mol. Plant Pathol. 4(1): 57–65.CrossRefPubMedGoogle Scholar
  36. Fellman JK, Miller TW, Mattinson DS, Mattheis JP. 2000. Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience. 35: 1026–1033.Google Scholar
  37. Fluhr R, Mattoo AK. 1996. Ethylene: Biosynthesis and perception. Critical Rev. Plant Sci. 15: 479–523.Google Scholar
  38. Folta KM. 2004. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 135:1407–1416.CrossRefPubMedGoogle Scholar
  39. Foolad MR, Arulsekar S, Becerra V, Bliss FA. 1995. A genetic linkage map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet. 91: 262–269.CrossRefGoogle Scholar
  40. Georgi LL, Wang Y, Reighard GL, Mao L, Wing RA, Abbott AG. 2003. Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Genome. 46:268–276.CrossRefPubMedGoogle Scholar
  41. Gibbs et al., The Rat Genome Sequencing Consortium. 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 428(6982):493–521.CrossRefPubMedGoogle Scholar
  42. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565): 92–100.CrossRefPubMedGoogle Scholar
  43. González-Agüero M, Pavez L, Ibáñez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, González M, Cambiazo, V. 2008. Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot. 59:1973–1986.CrossRefPubMedGoogle Scholar
  44. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. 2000. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124: 1570–1581.CrossRefPubMedGoogle Scholar
  45. Gupta V, Oliver B. 2003. Drosophila microarray platforms. Brief Funct Genomic Proteomic. 2(2):97–105.CrossRefPubMedGoogle Scholar
  46. Harada M, Ueda Y, Iwata T. 1985. Purification and some properties of alcohol acyltransferase from banana fruit. Plant Cell Physiol. 26(6):1067–1074.Google Scholar
  47. Harker FR, Hallett IC. 1992. Physiological changes associated with development of mealiness of apple fruit during cool storage. J Am Soc Hort Sci. 27: 1291–1294.Google Scholar
  48. Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA. 2000. Orchestrated transcription of key pathways in Arabidopsis by the Circadian clock. Science 290: 2110–2113.CrossRefPubMedGoogle Scholar
  49. Heywood VH. 1978. Flowering plants of the world. Mayflower Books, New York, 336p.Google Scholar
  50. Huang X, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9:868–877.CrossRefPubMedGoogle Scholar
  51. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N. 2001. The plasticity of dendritic cell responses to pathogens and their components. Science 294:870–875.CrossRefPubMedGoogle Scholar
  52. Hulme AC. 1958. Some aspects of the biochemistry of apple and pear fruits. Adv Food Res. 8: 297–413.Google Scholar
  53. Hulme AC, Rhodes MJC. 1971. Pome fruits. In: A.C. Hulme (Ed). The biochemistry of fruits and their products. Academic Press, London. pp. 333–373.Google Scholar
  54. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llacer G, Badenes ML. 2002. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) and mapping of PPV (sharka) resistance. Theor Appl Genet 105: 182–191.CrossRefPubMedGoogle Scholar
  55. James DJ, Dandekar AM. 1991. Regeneration and transformation of apple (Malus pumila Mill.). In: Plant tissue culture mannual: Fundamentals and applications. K. Lindsey (Eds). Kluwer academic publishers. B8: 1–18.Google Scholar
  56. James DJ, Passey AJ, Barbara DJ, Bevan, MW. 1989. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661.Google Scholar
  57. James DJ, Passey AJ, Barker SA. 1994. Stable gene expression in transgenic apple tree tissues and segregation of transgenes in the progeny – preliminary evidence. Euphytica 77: 119–121.CrossRefGoogle Scholar
  58. James DJ, Passey AJ, Baker SA, Wilson FM. 1996. Transgenes display stable patterns of expression in apple fruit and Mendelian segregation in the progeny. Bio/Technol. 14: 56–60.CrossRefGoogle Scholar
  59. Jelenkovic G, Harrington E. 1972. Morphology of the pachytene chromosomes in Prunus persica. Can J Genet Cytol. 14: 317–324.Google Scholar
  60. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlwanger E, Arus P. 1998. Construction of a saturated linkage map for Prunus using an almond X peach F2 progeny. Theor Appl Genet. 97: 1034–1041.CrossRefGoogle Scholar
  61. Kieber JJ, Ecker JR. 1993. Ethylene gas: It's not just for ripening any more. Trends Genet. 9: 356–362.CrossRefPubMedGoogle Scholar
  62. Knee M.1993. Pome fruits. In:G.B.Seymour et al. (Eds). Biochemistry of fruit ripening. Chapman and Hall, London. pp.325–346.Google Scholar
  63. Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK. 2007. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep. 2007 Jul;26(7):917–926.CrossRefPubMedGoogle Scholar
  64. Lerceteau-Kohler E, Guerin G, Laigret F, Denoyes-Rothan B. 2003. Characterization of mixed disomic and polysomic inheritance in the octoploid  strawberry (Fragaria x ananassa) using AFLP mapping. Theor Appl Genet. 107:619–628.CrossRefPubMedGoogle Scholar
  65. Liang P, and Pardee AB. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.CrossRefPubMedGoogle Scholar
  66. Lin JF, Wu SH. 2004. Molecular events in senescing Arabidopsis leaves. Plant J. 39(4):612–628.CrossRefPubMedGoogle Scholar
  67. Linde M, Debener T. 2003. Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet. 107(2):256–262.CrossRefPubMedGoogle Scholar
  68. Llave C, Kasschau KD, Carrington JC. 2000. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA. 97: 13401–13406.CrossRefPubMedGoogle Scholar
  69. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittman M, Wang C, Kobayashi M, Horton H, Brown EL. 1996. Expression minitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 14: 1675–1680.CrossRefPubMedGoogle Scholar
  70. Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SD, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA. 2007. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot. 58(5):1035–1045.CrossRefPubMedGoogle Scholar
  71. Mekuria G, Ramesh SA, Alberts E, Bertozzi T, Wirthensohn M, Collins G, Sedgley M. 2003. Comparison of ELISA and RT-PCR for the detection of Prunus necrotic ring spot virus and prune dwarf virus in almond (Prunus dulcis). J Virol Methods. 114(1):65–69.CrossRefPubMedGoogle Scholar
  72. McKeon T, Yang, SF. 1987. Biosynthesis and metabolism of ethylene. In Plant hormones and their role in plant growth and development. P.J. Davies (Ed). Pub Martinus Nijhoff. pp 94–112.Google Scholar
  73. Moore J, Janick J. 1975. (Eds). Advances in Fruit Breeding. Purdue Univ. Press, (West Lafayette, IN). 623 p.Google Scholar
  74. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC. 2000. A whole-genome assembly of Drosophila. Science. 287(5461):2196–2204.CrossRefPubMedGoogle Scholar
  75. Narusaka Y, Narusaka M, Seki M, Ishida J, Nakashima M, Kamiya A, Enju A, Sakurai T, Satoh M, Kobayashi M, Tosa Y, Park P, Shinozaki K. 2003. The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol. 44(4):377–387.CrossRefPubMedGoogle Scholar
  76. Negm FB, Loescher WH. 1979. Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol. 64: 69–73.CrossRefPubMedGoogle Scholar
  77. Pearson D, lipman J. 1988. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA. 85:2444–2448.CrossRefPubMedGoogle Scholar
  78. Paillard NMM. 1979. Byosynthese des produits volatils de la pomme:formation des alcohols et des esters a partir des acids gras. Phytochemistry. 18:1165–1171.CrossRefGoogle Scholar
  79. Paillard NMM. 1986. Evolution of the capacity of aldehydes production by crushed apple tissues, during an extended storage of fruits.p. 369–378. In: G. Charalambous (Ed). The shelf-life of foods and beverages. Elsevier Science, Amsterdam.Google Scholar
  80. Percy AE, Melton LD, Jameson PD. 1997. Xyloglucan and hemicelluloses in the cell wall during apple fruit development and ripening. Plant Sci. 125: 31–39.CrossRefGoogle Scholar
  81. Plotto A, McDaniel MR, Mattheis JP. 2000. Characterization of changes in ‘Gala’ apple aroma during storage using Osme analysis, a gas chromatography-olfactometry technique. J Am Soc Hort Sci. 126: 714–722.Google Scholar
  82. Reid M. 1987. Ethylene in plant growth and development and senescence. In: PJ. Davies (Ed). Plant hormones and their role in plant growth and development. Pub. Martinus Nijhoff. pp 94–112.Google Scholar
  83. Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J. 2002. Optimization of oligonucleotide-based DNA microarrays. Nuc Acids Res. 30(11):e51.CrossRefGoogle Scholar
  84. Sanz C, Richardson DG, Perez AG. 1995. In Fruit flavors. Biogenesis, characterization, and authentication. In: R.L. Rouseff and M.M. Leahy (Ed). ACS Symposium Series 596. Washington, DC. pp. 268–275.CrossRefGoogle Scholar
  85. Sanz C, Olias JM, Perez AG. 1997. Aroma biochemistry of fruits and vegetables. In: Phytochemistry of Fruit and Vegetables. Tomas-Barberan and Robins (Eds). Proceedings of the Phytochemical Society of Europe 41. 375 pGoogle Scholar
  86. Schaffer RJ, Friel EN, Souleyre EJ, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD. 2007. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol. 2007 Aug;144(4):1899–1912.CrossRefPubMedGoogle Scholar
  87. Schena M, Shalon D, Davis RW & PO Brown (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.CrossRefPubMedGoogle Scholar
  88. Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Karchi Z, Lewinsohn E. 2001. Acetyl Co-A: alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J Agric Food Chem. 49:794–799.CrossRefPubMedGoogle Scholar
  89. Shepard DP, Zehr EI, Bridges WC. 1999. Increased susceptibility to Bacterial Spot of peach trees growing in soil infested with Criconemella xenoplax. Plant Dis. 83:961–963.CrossRefGoogle Scholar
  90. Shiratake K, Kanayama Y, Maeshima M, Yamaki S. 1998. Changes in tonoplast protein and density with the development of pear fruit. Physiol Plant. 103: 312–319.CrossRefGoogle Scholar
  91. Smith NA, Singh SP, Wang M, Stoutjesdijk PA, Green AG, Waterhouse PM. 2000. Total silencing by intron-spliced hairpin RNAs. Nature. 407: 319–320.CrossRefPubMedGoogle Scholar
  92. Song J, Bangerth F. 1996. The effect of harvest date on aroma compound production from 'Golden Delicious' apple fruit and relationship to respiration and ethylene production. Postharv Biol Technol 8: 259–269.CrossRefGoogle Scholar
  93. Spellman P, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G, Ball C, Lepage M, Swiatek M, Marks W, Goncalves J, Markel S, Iordan D, Shojatalab M, Pizarro A, White J, Hubley R, Deutsch E, Senger M, Aronow B, Robinson A, Bassett D, Stoeckert CJ, Brazma A. 2002. Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3:9.CrossRefGoogle Scholar
  94. Suzuki A, Kanayama Y, Yamaki S. 1996. Occurrence of two sucrose synthase isozymes during maturation of Japanese pear fruit. J Am. Soc Hort Sci. 121: 943–947.Google Scholar
  95. Staton M. 2007. Bioinformatics Tool Development And Sequence Analysis Of Rosaceae Family Expressed Sequence Tags, Ph.D. Dissertation, Clemson University, April.Google Scholar
  96. Tanase K, Shiritake K, Mori H, Yamaki S. 2002. Changes in phosphorylation state of sucrose synthase during development of Japanese pear fruit. Physiol Plant. 114: 21–26.CrossRefPubMedGoogle Scholar
  97. Theologis T. 1994. Control of ripening. Curr Op Biotechnol 5: 152–157.CrossRefGoogle Scholar
  98. Uthairatanak A, Holford P, McGlasson B. 2005. Changes in total proteins related to chilling injury of nectarine. Europ J Hort Sci. 70: 271–277.Google Scholar
  99. Vionnet O, Baulcombe DC. 1997. Systemic signalling in gene silencing. Nature. 389: 553.CrossRefGoogle Scholar
  100. Wang D, Karle R, Brettin TS, Iezzoni AF. 1998. Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet. 97: 1217–1224.CrossRefGoogle Scholar
  101. Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM. 2004. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136(1):2512–2522.CrossRefPubMedGoogle Scholar
  102. Watada AE, Abbott JA.1985. Apple quality:influence of pre- and postharvest factors and estimation by objective methods. In: H.E. Pattee(Ed). Evaluation of quality of fruits and vegetables. AVI Publ.Co., Westport,CT. pp.63–81.Google Scholar
  103. Waterhouse PM, Graham MW, Wang M. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA. 95: 13959–13964.CrossRefPubMedGoogle Scholar
  104. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33(2):271–283.CrossRefPubMedGoogle Scholar
  105. Wolfinger RD, et al. 2001. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput. Biol. 8(6): 625–637.CrossRefPubMedGoogle Scholar
  106. Yahia EM. 1994. Apple flavor. Hort Rev. 16: 197–234.Google Scholar
  107. Yamada K. Mori H, Yamaki S. 1999. Gene expression of NAD-dependent sorbitol dehydrogenase during fruit development of apple (Malus punilla Mill. Var. domestica Schneid.). J Japan Soc Hort Sci. 68: 1099–1999.CrossRefGoogle Scholar
  108. Yamaguchi H, Kanayama Y, Soejima J, Yamaki S. 1996. Changes in the amounts of the NAD-dependent sorbitol dehygrogenase and its involvement in the development of apple fruit. J Am Soc Hort Sci. 121: 848–852.Google Scholar
  109. Yamaki S, Ishikawa K. 1986. Roles of four sorbitol-related enzymes and invertase in the seasonal alterations of sugar metabolism in apple tissues. J Am Soc Hort Sci. 111: 134–137.Google Scholar
  110. Zhu T, Budworth P, Han B, Brown D, Chang H-S, Zou G, Wang X. 2001. Towards elucidation the global gene expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242.CrossRefGoogle Scholar
  111. Zhu H, Cannon SB, Young ND, Cook DR. 2002. Phylogeny and genomic organization of the TIR and Non-TIR NBS-LRR resistance gene family inMedicago truncatula.MPMI 15(6):529–539.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Albert G. Abbott
    • 1
  • Bryon Sosinski
    • 1
  • Ariel Orellana
    • 1
  1. 1.Department of Genetics and Biochemistry100 Jordan Hall Clemson UniversityClemsonUSA

Personalised recommendations