An Introduction to Peach (Prunus persica)

  • Douglas Bielenberg
  • Ksenja Gasic
  • Jose X. Chaparro
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

When considering a broad cross section of climates and growing regions, the peach (Prunus persica (L) Batsch) is the most prevalent of the stonefruits, rivaling apple in terms of adaptation. The broad distribution reflects its extensive cultivation, as its prized fruits drove its rapid dissemination and selection for adaptation to new areas. The relatively short juvenility period and ease of making controlled crosses have made the peach the most successfully bred tree fruit crop. Today more Mendelian transmitted traits are understood in peach than in any other tree (Scorza and Sherman, 1996). These facets, in conjunction with a small genome size have made peach a desirable system for breeders and bench scientists focused on the common goal of tree fruit improvement.


Fruit Quality Peach Genome Prunus Persica Peach Cultivar Late Spring Frost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, A.G., Rajapakse, B., Sosinski, B., Lu, Z.X., Sossey-Alaoui, K., Gannavarapu, M., Reighard, G.L., Ballard, R.E., Baird, W.V., Scorza, R. and Callahan, A. (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort. 465:41–49.Google Scholar
  2. Bailey, C.H. and Hough, L.F. (1959) An hypothesis for the inheritance of season of ripening in progenies from certain early ripening peach varieties and selections. Proc. Am. Soc. Hortic. Sci. 73: 125–133.Google Scholar
  3. Baird, W.V., Estager, A.S. and Wells, J.K. (1994) Estimating nuclear-DNA content in peach and related diploid species using laser flow-cytometry and DNA hybridization. J. Am. Soc. Hortic. Sci. 119: 1312–1316.Google Scholar
  4. Beckman, T.G. and Reilly, C.C. (2005) Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea). J. Am. Pomol. Soc. 59:111–116.Google Scholar
  5. Bielenberg, D., Wang, Y., Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G.L., Scorza, R. and Abbott, A.G. (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet. Gen. 4:495–507.CrossRefGoogle Scholar
  6. Blenda, A.V., Verde, I., Georgi, L.L., Reighard, G., Forrest, S., Munoz-Torres, M., Baird, W.V. and Abbott, A.G. (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet. Gen. 81:281–288.Google Scholar
  7. Byrne, D.H. (2005) Trends in stone fruit cultivar development. Horttechnology 15: 494–500.Google Scholar
  8. Chang, L.S., Iezzoni, A., Adams, G. and Howell, G.S. (1989) Lucostoma tolerance and cold hardiness among diverse peach genotypes. J. Am. Soc. Hort. Sci. 114:482–485.Google Scholar
  9. Chaplin, C.E. and Schneider, G.W. (1975) Resistance to the common peach tree borer (Sanninoidea exitiosa Say) in seedlings of ‘Rutgers Redleaf’ peach. HortScience 10:400.Google Scholar
  10. Dai, W.H., Magnusson, V. and Johnson, C. (2007) Agrobacterium-mediated transformation of chokecherry (Prunus virginiana L.). Hortscience 42: 140–142.Google Scholar
  11. de Souza, V.A.B., Byrne, D.H. and Taylor, J.F. (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J. Am. Hort. Sci. 123(4):604–611.Google Scholar
  12. Dirlewanger, E., Pronier, V., Parvery, C., Rothan, C., Guye, A. and Monet, R. (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor. Appl. Genet. 97, 888–895.CrossRefGoogle Scholar
  13. Etienne, C., Rothan, C., Moing, A., Plomion, C., Bodénès, C., Svanella-Dumas, L., Cosson, P., Pronier, V., Monet, R. and Dirlewanger, E. (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 105: 145–159.CrossRefPubMedGoogle Scholar
  14. Foulongne, M., Pascal, T., Arus, P. and Kervella J (2003) The potential of Prunus davidiana for introgression into peach (Prunus persica L. Batsch) assessed by comparative mapping. Theor. Appl. Genet. 107:227–238.CrossRefPubMedGoogle Scholar
  15. Foulongne, M., Pascal, T., Pfeiffer, F. and Kervella, J. (2002) Introgression of a polygenic resistance to powdery mildew from a wild species Prunus davidiana into peach [Prunus persica (L.) Batsch], a case study of marker assisted selection in fruit tree. Acta Hort. 592: 259–265.Google Scholar
  16. French, A.P. (1951) The peach: Inheritance of time of ripening and other economic characteristics. Massachusetts Agric. Exp. Sta. Bull. 462.Google Scholar
  17. Gillen, A.M. and Bliss, F.A. (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J. Am. Soc. Hortic. Sci. 130:24–33.Google Scholar
  18. Gradziel, T.M., Thorpe, M.A., Bostock, R.M. and Wilcox, S.M. (1998) Breeding for brown rot (Monilinia fructicola) resistance in clingstone peache with emphasis on the role of fruit phenolics. Acta Hort. 465:161–170.Google Scholar
  19. Gutierrez, P. and Rugini, E. (2004) Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock ‘Colt’ (Prunus avium x P. pseudocerasus). Plant Cell Tiss. Org. Cult. 79: 223–232.CrossRefGoogle Scholar
  20. Gutierrez-Pesce, P., Taylor, K., Muleo, R. and Rugini, E. (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium x P-pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep. 17: 574–580.CrossRefGoogle Scholar
  21. Hammerschlag, F.A. and Smigocki, A.C. (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J. Am. Soc. Hortic. Sci. 116: 1092–1097.Google Scholar
  22. Hancock, J.F., Scorza, R. and Lobos, G.A. (2008). Peaches. In: Hancock, J.F. (Ed.) Temperate fruit crop breeding, Springer, Netherlands, 265–298.CrossRefGoogle Scholar
  23. Hansche, P.E., Hesse, C.O., Beres, V. (1972) Estimates of genetic and environmental effects of several traits in peach. J. Am. Soc. Hortic. Sci. 97:76–79.Google Scholar
  24. Horn, R., Lecouls, A.C., Callahan, A., Dandekar, A., Garay, L., McCord, P., Howad, W., Chan, H., Verde, I., Main, D., Jung, S., Georgi, L., Forrest, S., Mook, J., Zhebentyayeva, T., Yu, Y.S., Kim, H.R., Jesudurai, C., Sosinski, B., Arus, P., Baird, V., Parfitt, D., Reighard, G., Scorza, R., Tomkins, J., Wing, R. and Abbott, A.G. (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor. Appl. Genet. 110: 1419–1428.CrossRefPubMedGoogle Scholar
  25. Jung, S., Jesudurai, C., Staton, M., Du, Z.D., Ficklin, S., Cho, I.H., Abbott, A., Tomkins, J. and Main, D. (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5: Art. No. 130.CrossRefPubMedGoogle Scholar
  26. Lammerts, W.E. (1945) The breeding of ornamental edible peaches for mild climates, I. Inheritance of tree and flower characteristics. Am. J. Bot. 32:53–61.CrossRefGoogle Scholar
  27. Layne, R.E.C. (1984) Breeding peaches in North America for cold hardiness and perennial canker (Leucostoma ssp.) resistance: review and outlook. Fruit Varieties J. 38:130–136.Google Scholar
  28. Lesley J.W. (1944) Peach breeding in relation to winter chilling requirements. Proc. Am. Soc. Hortic. Sci. 70:243–250.Google Scholar
  29. Lu, Z.X., Sosinski, B., Reighard, G., Baird, W.V. and Abbott, A.G. (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207.CrossRefGoogle Scholar
  30. Machado, A.D., Puschmann, M., Puhringer, H., Kremen, R., Katinger, H. and Machado, M.L.D. (1995) Somatic embryogenesis of prunus-subhirtella autumno-rosa and regeneration of transgenic plants after agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340.CrossRefGoogle Scholar
  31. Machado, M.L.D., Machado, A.D., Hanzer, V., Weiss, H., Regner, F., Steinkellner, H., Mattanovich, D., Plail, R., Knapp, E., Kalthoff, B. and Katinger, H. (1992) Regeneration of transgenic plants of prunus-armeniaca containing the coat protein gene of plum pox virus. Plant Cell Rep. 11: 25–29.Google Scholar
  32. Maghuly, F., Machado, A.D., Leopold, S., Khan, M.A., Katinger, H. and Laimer, M. (2007) Long-term stability of marker gene expression in Prunus subhirtella: A model fruit tree species. J. Biotechnol. 127: 310–321.CrossRefPubMedGoogle Scholar
  33. Mante, S., Morgens, P.H., Scorza, R., Cordts, J.M. and Callahan, A.M. (1991) agrobacterium-mediated transformation of plum (prunus-domestica l) hypocotyl slices and regeneration of transgenic plants. Bio-Technol. 9: 853–857.Google Scholar
  34. Martinez-Gomez, P., Arulskar, S., Potter, D. and Gradziel, T.M. (2003) Relationships among peach, almond, and related species as detected by simple sequence repeat markers. J. Am. Soc. Hortic. Sci. 128:667–671.Google Scholar
  35. Massonie, G., Maison, P., Monet, R. and Grasselly, C. (1982) Resistance to the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae) in Prunus persica (L.) Batsch and other Prunus species (in French). Agronomie 2:63–69.CrossRefGoogle Scholar
  36. Miguel, C.M. and Oliveira, M.M. (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep. 18: 387–393.CrossRefGoogle Scholar
  37. Monet, R. (1985) Heredity of the resistance to leaf curl (Taphrina deformans) and green aphid (Myzus persicae) in the peach. Acta Hortic. 173:21–23.Google Scholar
  38. Mowry, J.B. (1964) Inheritance of cold hardiness of dormant peach flower buds. Proc. Am. Soc. Hortic. Sci. 85:128–133.Google Scholar
  39. Ogundiwin, E., Peace, C., Nicolet, C., Rashbrook, V., Gradziel, T., Bliss, F., Parfitt, D. and Crisosto, C. (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet. Gen. DOI 10.1007/s11295-007-0130-0Google Scholar
  40. Okie W.R. (1984) Rapid multiplication of peach seedlings by herbaceous stem cuttings. Hortscience 19(2): 249–251.Google Scholar
  41. Okie, W.R., Bacon, T. and Bassi, D. (2008) Fresh market cultivar development. In: Layne D.R. and D. Bassi (Eds.) The peach, botany, production and uses. CAB International Press, Wallingford, Oxon, UK. pp. 850.Google Scholar
  42. Padilla, I.M.G., Golis, A., Gentile, A., Damiano, C., and Scorza, R. (2006) Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tiss. Org. Cult. 84: 309–314.CrossRefGoogle Scholar
  43. Peace, C.P., Cristoso, C.H. and Gradziel, T.M. (2005) Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach. Mol. Breed. 16:21–31.CrossRefGoogle Scholar
  44. Perez-Clemente, R.M., Perez-Sanjuan, A., Garcia-Ferriz, L., Beltran, J.-P. and Canas, L.A. (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol. Breed. 14: 419–427.CrossRefGoogle Scholar
  45. Petri, C., Alburquerque, N. and Burgos, L. (2005) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tiss. Org. Cult. 80: 271–276.CrossRefGoogle Scholar
  46. Petri, C., Alburquerque, N., Perez-Tornero, O. and Burgos, L. (2005) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tiss. Org. Cult. 82: 105–111.CrossRefGoogle Scholar
  47. Quarta, R., Dettori, M.T., Sartori, A. and Verde, I. (2000) Genetic linkage map and QTL analysis in peach. Acta Hort. 521, 233–241.Google Scholar
  48. Quilot, B., Wu, B.H., Kervella, J., Ge´nard, M., Foulongne, M. and Moreau, K. (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor. Appl. Genet. 109:884–897.CrossRefPubMedGoogle Scholar
  49. Rieger M. (2006) Peach (Prunus persica). In Introduction to fruit crops. The Haworth Press, Inc., New York, pp. 311–323.Google Scholar
  50. Rodriguez, A.J., Sherman, W.B., Scorza, R., Wisniewski, M. (1994) ‘Evergreen’ peach, its inheritance and dormant behavior. J. Am. Soc. Hortic. Sci. 119:789–792.Google Scholar
  51. Sansavini, S., Gamberini, A. and Bassi, D. (2006) Peach breeding, genetics and new cultivar trends. Acta Hort. 713: 23–48.Google Scholar
  52. Scorza, R. and Pusey, P.L. (1984) A wound-freezing inoculation technique for evaluating resistance to Cytospora leucostoma in young peach trees. Phytopathology 74:569–572.CrossRefGoogle Scholar
  53. Scorza, R. and Sherman, W.B. (1996) Peaches. In: Janick J., Moore J.N. (Eds.) Fruit breeding, vol 1.: Tree and tropical fruits. John Whiley & Sons, New York, pp.325–440.Google Scholar
  54. Sharp, R.H. (1961) Developing new peach varieties for Florida. Proc. Fla. State Hortic. Soc. 74:348–363.Google Scholar
  55. Sherman, W.B. and Lyrene, P.M. (1981) Bacterial leaf spot susceptibility in low chilling peaches. Fruit Var. J. 35:74–77.Google Scholar
  56. Shulaev, V., Korban, S.S., Sosinski, B., Abbott, A.G., Aldwinckle, H.S., Folta, K.M., Iezzoni, A., Main, D., Arus, P., Dandekar, A.M., Lewers, K., Brown, S.K., Davis, T.M., Gardiner, S.E., Potter, D. and Veilleux, R.E. (2008) Multiple models for Rosaceae genomics. Plant Physiol. DOI:10.1104/pp.107.115618.Google Scholar
  57. Smykov, V.K., Ovcharenko, G.V., Perfilyeva, Z.N. and Shoferistov, E.P. (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background. Byull Gos Nikitsh Bot Sada 88:74–80.Google Scholar
  58. Song, G.Q. and Sink, K.C. (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P-cerasus x P-canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep. 25: 117–123.CrossRefPubMedGoogle Scholar
  59. Stushnoff C. (1972) Breeding and selection methods for cold hardiness in deciduous crops. HortScience 7:10–13.Google Scholar
  60. Tsukanova Z.G., Sokolova S.A., Gatina E.S. and Smykov V.K. (1982) Inheritance of mildew resistance by peaches. Byull Gos Nikitsk Bot Sada 49: 72–75.Google Scholar
  61. Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S. Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R.R., Bhalerao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N, Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J.C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D.R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C.J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., de Peer, Y.V. and Rokhsar, D. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604.CrossRefPubMedGoogle Scholar
  62. Vileila-Morales, E.A., Sherman, W.B., Wilcox, C.J. and Andrews, C.P. (1981) Inheritance of short fruit development period in peach. J. Am. Soc. Hortic. Sci. 106:399–401.Google Scholar
  63. Viruel, M.A., Madur, D., Dirlewanger, E., Pascal, T. and Kervella, J. (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort. 465:79–87.Google Scholar
  64. Wang, G.Y., Michailides, T.J., Hammock, B.D., Lee, Y. -M. and Bostock, R.M. (2002) Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genet. Biol. 35, 261–276.CrossRefPubMedGoogle Scholar
  65. Watkin W. and Brown A.G. (1956) Genetic response to selection in cultivated plants: gene frequencies in varieties of Prunus persica. Proc. Roy. Soc. B 145: 337–347.CrossRefGoogle Scholar
  66. Weaver, D.J., Doud, S.L. and Wehunt, E.J. (1979) Evaluation of peach seedling rootstocks for susceptibility to bacterial canker, caused by Pseudomonas syringae. Plant Dis. Rep. 63: 364–367.Google Scholar
  67. Werner, D.J., Ritchie, D.F., Cain, D.W. and Zehr, E.I. (1986) Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortScience 21:127–130.Google Scholar
  68. Wisniewski, M.E. and Arora, R. (2000) Structural and biochemical aspects of cold hardiness in woody plants. In: Molecular biology of woody plants. In: Mohan Jain S. and Minocha S.C. (Eds.). Kluwer Academic Publishers, New York, pp.419–437.Google Scholar
  69. Yoon, J.H., Liu, D.C., Song, W.S. Liu, W.S., Zhang, A.M., Li, S.H. (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J. Am. Soc. Hortic. Sci. 131:513–521.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Douglas Bielenberg
    • 1
  • Ksenja Gasic
    • 1
  • Jose X. Chaparro
    • 1
  1. 1.Department of Biological SciencesClemson UniversityClemsonUSA

Personalised recommendations