Skip to main content

Comparative Genomics in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

The genomes of grasses are very different in terms of size, ploidy level and chromosome number. Among them, the Triticeae species (wheat, barley, rye) have some of the largest and complex genomes. Comparative mapping studies between rice, maize, sorghum, barley and wheat have pioneered the field of plant comparative genomics a decade ago. They showed that the linear order (colinearity) of genetic markers and genes is very well conserved opening the way to accelerated map-based cloning and defining rice as a model for grasses. More recently, the availability of BAC libraries and large sets of genomic sequences including the completion of the rice genome have permitted microcolinearity studies that revealed rearrangements between the grass genomes and provided some insights into mechanisms that have shaped their genome during evolution. This review summarizes a decade of comparative genomics studies in grasses with a special emphasis on the wheat and barley genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, S., and Tanksley, S.D. (1993) Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90, 7980–7984.

    PubMed  CAS  Google Scholar 

  • Bailey, P.C., McKibbin, R.S., Lenton, J.R., Holdsworth, M.J., Flintham, J.E. and Gale, M.D. (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98, 281–284.

    CAS  Google Scholar 

  • Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S. and Haussler, D. (2004) Ultraconserved elements in the human genome. Science 304, 1321–1325.

    PubMed  CAS  Google Scholar 

  • Bennett, M.D. and Smith, J.B. (1976) Nuclear DNA amounts in angiosperms. Philos. Trans. R Soc. Lond. B Biol. Sci. 274933, 227–274.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. and Ramakrishna, W. (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol. Biol. 48, 821–827.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. and Ma, J. (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr. Opin. Plant Biol. 62, 128–133.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Ma, J. and Devos, K.M. (2005) Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132.

    PubMed  CAS  Google Scholar 

  • Bertin, I., Zhu, J.H. and Gale, M.D. (2005) SSCP-SNP in pearl millet – a new marker system for comparative genetics. Theor. Appl. Genet. 110, 1467–1472.

    PubMed  CAS  Google Scholar 

  • Bossolini, E., Wicker, T., Knobel, P.A. and Keller, B. (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 494, 704–717.

    PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease- resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    PubMed  CAS  Google Scholar 

  • Brunner, S., Keller, B. and Feuillet, C. (2003) A large rearrangement involving genes and low copy DNA interrupts the microcolinearity between rice and barley at the Rph7 locus. Genetics 164, 673–683.

    PubMed  CAS  Google Scholar 

  • Brunner, S., Fengler, K., Morgante, M., Tingey, S. and Rafalski, A. (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 172, 343–360.

    PubMed  CAS  Google Scholar 

  • Buell, C.R., Yuan, Q., Ouyang, S., Liu, J. et al. (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res. 15, 1284–1291.

    PubMed  CAS  Google Scholar 

  • Calabrese, P.P., Chakravarty, S. and Vision, T.J. (2003) Fast identification and statistical evaluation of segmental homologies in comparative maps. Bioinformatics 19(Suppl 1), i74–i80.

    PubMed  Google Scholar 

  • Caldwell, K.S., Langridge, P. and Powell, W. (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol. 136, 3177–3190.

    PubMed  CAS  Google Scholar 

  • Chalhoub, B., Belcram, H. and Caboche, M. (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotech. J. 2, 181–188.

    CAS  Google Scholar 

  • Chantret, N., Salse, J., Sabot, F., Rahman, S. et al. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.

    PubMed  CAS  Google Scholar 

  • Chen, H., Wang, S., Xing, Y., Xu, C., Hayes, P.M. and Zhang, Q. (2005) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc. Natl. Acad. Sci. USA 100, 2544–2549.

    Google Scholar 

  • Chen, M., SanMiguel, P., deOliveira, A.C., Woo, S.S., Zhang, H., Wing, R.A. and Bennetzen, J.L. (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl. Acad. Sci. USA 94, 3431–3435.

    PubMed  CAS  Google Scholar 

  • Chen, M., SanMiguel, P. and Bennetzen, J.L. (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148, 435–443.

    PubMed  CAS  Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V. et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.

    PubMed  CAS  Google Scholar 

  • Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X. and Gale, M.D. (1993a) Chromosome rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–689.

    Google Scholar 

  • Devos, K.M., Millan, T. and Gale, M.D. (1993b) Comparative RFLP maps of the homoeologous group2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85, 784–792.

    Google Scholar 

  • Devos, K.M. and Gale, M.D. (1997) Comparative genetics in the grasses. Plant Mol. Biol. 35, 3–15.

    PubMed  CAS  Google Scholar 

  • Devos, K.M. and Gale, M.D. (2000) Genome relationships: the grass model in current research. Plant Cell 12, 637–646.

    PubMed  CAS  Google Scholar 

  • Devos, K.M. (2005) Updating the ‘crop circle’. Curr. Opin. Plant Biol. 8, 155–162.

    CAS  Google Scholar 

  • Draper, J., Mur, L.J., Jenkins, G., Ghosh-Biswas, C., Bablak, P., Hasterok, R. and Routledge, A.P.M. (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127, 1539–1555.

    PubMed  CAS  Google Scholar 

  • Dubcovsky, J., Luo, M.C., Zhong, G.Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A. and Dvorák, J. (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 1432, 983–999.

    CAS  Google Scholar 

  • Dubcovsky, J., Ramakrishna, W., SanMiguel, P.J., Busso, C.S., Yan, L., Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 1253, 1342–1353.

    PubMed  CAS  Google Scholar 

  • Dunford, R.P., Yano, M., Kurata, N., Sasaki, T., Huestis, G., Rocheford, T. and Laurie, D.A. (2002) Comparative mapping of the Barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161, 825–834.

    PubMed  CAS  Google Scholar 

  • Fang, Z., Polacco, M., Chen, S., Schroeder, S., Hancock, D., Sanchez, H. and Coe, E. (2003) cMap: the comparative genetic map viewer. Bioinformatics 19, 416–417.

    PubMed  CAS  Google Scholar 

  • Feng, Q., Zhang, Y., Hao, P., Wang, S. et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420, 316–320.

    PubMed  CAS  Google Scholar 

  • Feuillet, C. and Keller, B. (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA 96, 8265–8270.

    PubMed  CAS  Google Scholar 

  • Feuillet, C. and Keller, B. (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. 89, 3–10.

    PubMed  CAS  Google Scholar 

  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. and Keller, B. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.

    PubMed  CAS  Google Scholar 

  • Fu, H. and Dooner, H.K. (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 9914, 9573–9578.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. and Doebley, J.F. (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 9413, 6809–6814.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. (2001). Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res. 11, 55–66.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. (2002) Evolutionary dynamics of grass genomes. New Phytol. 154, 15–28.

    CAS  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    PubMed  CAS  Google Scholar 

  • Gottwald, S., Stein, N., Borner, A., Sasaki, T. and Graner, A. (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol. Genet. Genomics 271, 426–436.

    PubMed  CAS  Google Scholar 

  • Griffiths, S., Dunford, R.P., Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131, 1855–1867.

    PubMed  CAS  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    PubMed  CAS  Google Scholar 

  • Gu, Y.Q., Coleman-Derr, D., Kong, X. and Anderson, O.D. (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol. 135, 459–470.

    PubMed  CAS  Google Scholar 

  • Gu, Y.Q., Salse, J., Coleman-Derr, D., Dupin, A., Crossman, C., Lazo, G.R., Huo, N., Belcram, H., Ravel, C., Charmet, G., Charles, M., Anderson, O.D. and Chalhoub, B. (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 1743, 1493–1504.

    PubMed  CAS  Google Scholar 

  • Guyot, R., Yahiaoui, N., Feuillet, C. and Keller, B. (2004). In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct. Integr. Genomics 4, 47–58.

    CAS  Google Scholar 

  • Hampson, S., McLysaght, A., Gaut, B. and Baldi, P. (2003) LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome. Res. 13, 1–12.

    Google Scholar 

  • Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J. and Jenkins, G. (2006) Alignment of the genomes of brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173, 349–362

    PubMed  CAS  Google Scholar 

  • Herrmann, R.G., Martin, R., Busch, W., Wanner, G. and Hohmann, U. (1996) Physical and topographical mapping among Triticeae chromosomes. Symp. Soc. Exp. Biol. 50, 25–30.

    PubMed  CAS  Google Scholar 

  • Hohmann, U., Endo, T.R., Gill, K.S. and Gill, B.S. (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol. Gen. Genet. 2455, 644–653.

    CAS  Google Scholar 

  • Huang, S.X., Sirikhachornkit, A., Faris, J.D., Su, X.J., Gill, B.S., Haselkorn, R. and Gornicki, P. (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3- phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48, 805–820.

    PubMed  CAS  Google Scholar 

  • Inada, D.C., Bashir, A., Lee, C., Thomas, B.C., Ko. C., Goff, S.A. and Freeling, M. (2003) Conserved noncoding sequences in the grasses. Genome Res. 13, 2030–2041.

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project. (2005) The map-based sequence of the rice genome. Nature 436, 793–800.

    Google Scholar 

  • Isidore, E., Scherrer, B., Chaloub, B., Feuillet, C. and Keller, B. (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res. 15, 526–536.

    PubMed  CAS  Google Scholar 

  • Jaiswal, P., Ni, J., Yap, I., Ware, D. et al. (2006) Gramene: a bird’s eye view of cereal genomes. Nucl. Acids Res. 34, 717–723.

    Google Scholar 

  • Janda, J., Bartos, J., Safar, J., Kubalakova, M. et al. (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor. Appl. Genet. 109, 1337–1345.

    PubMed  CAS  Google Scholar 

  • Janda, J., Šafář, J., Kubaláková, M., Bartoš, J. et al. (2006) Advanced resources for plant genomics: BAC library specific for the short arm of chromosome 1B. Plant J. 47, 977–986.

    PubMed  CAS  Google Scholar 

  • Kaplinsky, N.J., Braun, D.M., Penterman, J., Goff, S.A. and Freeling, M. (2002) Utility and distribution of conserved noncoding sequences in the grasses. Proc. Natl. Acad. Sci. 99, 6147–6151.

    PubMed  CAS  Google Scholar 

  • Kellogg, E.A. (2001) Evolutionary history of the grasses. Plant Phys. 125, 1198–1205.

    CAS  Google Scholar 

  • Kilian, A., Chen, J., Han, F., Steffenson, B. and Kleinhofs, A. (1997) Towards map-based cloning of the barley stem rust resistance genes rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol. Biol. 35, 187–195.

    PubMed  CAS  Google Scholar 

  • Kishimoto, N., Higo, H., Abe, K., Arai, S., Saito, A. and Higo, K. (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor. Appl. Genet. 88, 722–726.

    CAS  Google Scholar 

  • Koller, O.L. and Zeller, F. J. (1976) Homoeologous relation ships of rye chromosomes 4R and 7R with wheat chromosomes. Genet. Res. 28, 177–188.

    Google Scholar 

  • Kubalakova, M., Vrana, J., Cihalikova, J., Simkova, H. and Dolezel, J. (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372.

    PubMed  Google Scholar 

  • Lai, J., Li, Y., Messing, J. and Dooner, H.K. (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc. Natl. Acad. Sci. USA 10225, 9068–9073.

    PubMed  CAS  Google Scholar 

  • La Rota, M. and Sorrells, M.E. (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4, 34–46.

    PubMed  Google Scholar 

  • Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A. and Schulze-Lefert, P. (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95, 370–375.

    PubMed  CAS  Google Scholar 

  • Li, W. and Gill, B.S. (2002) The colinearity of the Sh2/A1 orthologous region in rice sorghum and maize is interrupted and accompanied by genome expansion in the Triticeae. Genetics 160, 1153–1162.

    PubMed  CAS  Google Scholar 

  • Lin, Y.R., Schertz, K.F. and Paterson, A.H. (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141, 391–411.

    PubMed  CAS  Google Scholar 

  • Lisch, D.R., Freeling, M., Langham, R.J. and Choy, M. (2001) Mutator transposase is widespread in the grasses. Plant Physiol. 1253, 1293–1303.

    PubMed  CAS  Google Scholar 

  • Lisch, D. (2002) Mutator transposons. Trends Plant Sci. 711, 498–504.

    PubMed  CAS  Google Scholar 

  • Liu, C.J., Atkinson, M.D., Chinoy, C.N., Devos, K.M. and Gale, M.D. (1992) Nonhomoeologous translocations between group 4, 5, and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 83, 305–312.

    Google Scholar 

  • Lockton, S. and Gaut, B.S. (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet. 21, 60–65.

    PubMed  CAS  Google Scholar 

  • Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. (1995) Cereal genome evolution: grasses, line up and form a circle. Curr. Biol. 5, 737–739.

    PubMed  CAS  Google Scholar 

  • Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A. and Rafalski, A. (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 379, 997–1002.

    PubMed  CAS  Google Scholar 

  • Nagamura, Y., Inoue, T., Antonio, B.A. et al. (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci. 45, 373–376.

    CAS  Google Scholar 

  • Naranjo, T., Roca, A., Goicoechea, P.G. and Giraldez, R. (1987) Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882.

    Google Scholar 

  • Naranjo, T. and Fernandez-Rueda, P. (1991) Homoeology of rye chromosome arms to wheat. Theor. Appl. Genet. 82, 577–586.

    Google Scholar 

  • Park, Y.J., Dixit, A., Yoo, J.W. and Bennetzen, J. (2004) Further evidence of microcolinearity between barley and rice genomes at two orthologous regions. Mol. Cells 173, 492–502.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Lin, Y.R., Li, Z.K., Schertz, K.F., Doebley, J.F., Pinson, S.R.M., Liu, S.C., Stansel, J.W. and Irvine, J.E. (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1718.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Bowers, J.E. and Chapman, B.A. (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Freeling, M. and Sasaki, T. (2005) Grains of knowledge: genomics of model cereals. Genome Res. 1512, 1643–1650.

    PubMed  CAS  Google Scholar 

  • Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P. et al. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    PubMed  CAS  Google Scholar 

  • Pourkheirandish, M., Wicker, T., Stein, N., Fujimura, T. and Komatsuda, T. (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor. Appl. Genet. 1148, 1357–1365.

    PubMed  CAS  Google Scholar 

  • Qi, L.L., Echalier, B., Chao, S., Lazo, G.R. et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.

    PubMed  CAS  Google Scholar 

  • Ramakrishna, W., Dubcovsky, Y., Park, Y.J., Busso, C.S., Emberton, J., SanMiguel, P. and Bennetzen, J.L. (2002a) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162, 1389–1400.

    Google Scholar 

  • Ramakrishna, W., Emberton, J., Ogden, M., SanMiguel, P. and Bennetzen, J.L. (2002b) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14, 3213–3223.

    Google Scholar 

  • Safar, J., Bartos, J., Janda, J., Bellec, A. et al. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.

    PubMed  CAS  Google Scholar 

  • Salse, J., Piegu, B., Cooke, R. and Delseny, M. (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucl. Acids Res. 30, 2316–2328.

    PubMed  CAS  Google Scholar 

  • Salse, J., Piegu, B., Cooke, R. and Delseny, M. (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J. 38, 396–409.

    PubMed  CAS  Google Scholar 

  • Salse, J. and Feuillet, C. (2007) Comparative genomics of cereals. In: R. Varshney and R. Tuberosa (Eds.), Genomics-Assisted Crop Improvement (Chapter 18). Springer Verlag, Dordrecht, The Netherlands, pp. 177–205.

    Google Scholar 

  • Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Masood, U., Calcagno, T., Cooke, R., Delseny, M. and Feuillet, C. (2008) Identification and characterization of conserved duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11–24.

    PubMed  CAS  Google Scholar 

  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K. et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312–316.

    PubMed  CAS  Google Scholar 

  • Scherrer, B., Isidore, E., Klein, P., Kim, J.S., Bellec, A., Chalhoub, B., Keller, B. and Feuillet, C. (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17, 361–374.

    PubMed  CAS  Google Scholar 

  • Singh, N.K., Raghuvanshi, S., Srivastava, S.K., Gaur, A. et al. (2004) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct. Integr. Genomics 4, 102–117.

    PubMed  CAS  Google Scholar 

  • Smith, D.B. and Flavell, R.B. (1975) Characterization of the wheat genome by renaturation kinetics. Chromosoma 50, 223–242.

    CAS  Google Scholar 

  • Song, R. and Messing, J. (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad. Sci. USA 10015, 9055–9060.

    PubMed  CAS  Google Scholar 

  • Sorrells, M.E., LaRota, M., Bermudez-Kandianis, C.E., Greene, R.A. et al. (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827.

    PubMed  CAS  Google Scholar 

  • Sorrells, M.E. (2004) Cereal Genomics research in the post-genomic era. In: P.K. Gupta and R.K. Varshney (Eds.), Cereal Genomics. Kluwer Academic Publishers, Dordrecht, pp. 559–584.

    Google Scholar 

  • Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97, 13436–13441.

    PubMed  CAS  Google Scholar 

  • Stein, N. (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res. 151, 21–31.

    PubMed  CAS  Google Scholar 

  • Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R.K., Perovic, D., Grosse, I. and Graner, A. (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114(5), 823–839.

    PubMed  CAS  Google Scholar 

  • Suoniemi, A., Anamthawat-Jónsson, K., Arna, T. and Schulman, A.H. (1996a) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30(6), 1321–1329.

    Google Scholar 

  • Suoniemi, A., Narvanto, A. and Schulman, A.H. (1996b) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31(2), 295–306.

    Google Scholar 

  • Sutton, T., Whitford, R., Baumann, U., Dong, C., Able, J.A. and Langridge, P. (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J. 36(4), 443–456.

    PubMed  CAS  Google Scholar 

  • Sutton, T., Baumann, U., Hayes, J., Collins, N.C., Shi, B.J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M. and Langridge, P. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855), 1446–1449.

    PubMed  CAS  Google Scholar 

  • Swigonová, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L. and Messing, J. (2004) Close split of sorghum and maize genome progenitors. Genome Res. 14(10A), 1916–1923.

    PubMed  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium. (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300, 1566–1569.

    Google Scholar 

  • The Rice Chromosome 3 Sequencing Consortium. (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res. 15, 1284–1291.

    Google Scholar 

  • The Rice Full-Length cDNA Consortium. (2003) Collection, mapping, and annotation of over 28 000 cDNA clones from japonica rice. Science 301, 376–379.

    Google Scholar 

  • Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.

    PubMed  CAS  Google Scholar 

  • Vandepoele, K., Saeys, Y., Simillion, C., Raes, J. and Van de Peer, Y. (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res. 12, 1792–1801.

    PubMed  CAS  Google Scholar 

  • Vandepoele, K., Simillion, C. and Van de Peer, Y. (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15, 2192–2202.

    PubMed  CAS  Google Scholar 

  • Van Deynze, A.E., Nelson, J.C., O’Donoughue, L.S., Ahn, S.N., Siripoonwiwat, W., Harrington, S.E., Yglesias, E.S., Braga, D.P., McCouch, S.R. and Sorrells, M.E. (1995) Comparative mapping in grasses. Oat relationships. Mol. Gen. Genet. 249(3), 349–356.

    PubMed  Google Scholar 

  • Van Deynze, A.E., Nelson, J.C., Yglesias, E.S., Harrington, S.E., Braga, D.P., McCouch, S.R. and Sorrells, M.E. (1995, Oct) Comparative mapping in grasses. Wheat relationships. Mol. Gen. Genet. 25, 248(6), 744–754.

    Google Scholar 

  • Vogel, J.P., Gu, Y.Q., Twigg, P., Lazo, G.R., Laudencia-Chingcuanco, D., Hayden, D.M., Donze, T.J., Vivian, L.A., Stamova, B. and Coleman-Derr, D. (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113(2), 186–195.

    PubMed  CAS  Google Scholar 

  • Wang, X., Shi, X., Hao, B., Ge, S. and Luo, J. (2005). Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol. 165, 937–946.

    PubMed  CAS  Google Scholar 

  • Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, B.B. and Powell, W. (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253(6), 687–694.

    PubMed  CAS  Google Scholar 

  • Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, E., Kim, H., Goicoechea, J.L., Chen, M., Lee, S., Fuks, G., Sanchez-Villeda, H., Schroeder, S., Fang, Z., McMullen, M., Davis, G., Bowers, J.E., Paterson, A.H., Schaeffer, M., Gardiner, J., Cone, K., Messing, J., Soderlund, C. and Wing, R.A. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 3(7), e123.

    PubMed  Google Scholar 

  • Wendel, J.F., Stuber, C.W., Goodman, M.M. and Beckett, J.B. (1989) Duplicated plastid and triplicated cytosolic isozymes of triosephosphate isomerase in maize (Zea mays L.). J. Hered. 3, 218–228.

    Google Scholar 

  • Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcowski, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15, 1186–1197.

    PubMed  CAS  Google Scholar 

  • Wicker, T., Yahiaoui, N. and Keller, B. (2007) Contrasting rates of evolution in pm3 Loci from three wheat species and rice. Genetics 177(2), 1207–1216.

    PubMed  CAS  Google Scholar 

  • Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538.

    PubMed  CAS  Google Scholar 

  • Yan, L., Loukoiannov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    PubMed  CAS  Google Scholar 

  • Yan, L., Loukoiannov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    PubMed  CAS  Google Scholar 

  • Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky, J. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103(51), 19581–19586.

    PubMed  CAS  Google Scholar 

  • Yu, J., Hu, S., Wang, J., Wong, G.K.S. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    PubMed  CAS  Google Scholar 

  • Yu, J., Wang, J., Lin, W., Li, S. et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, 266–281.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Salse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feuillet, C., Salse, J. (2009). Comparative Genomics in the Triticeae. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_17

Download citation

Publish with us

Policies and ethics