Skip to main content

Synthesis of Platelet-Activating Factor in Brain

  • Chapter
  • 577 Accesses

Platelet-activating factor (PAF) is the trivial name for 1-O-alkyl-2-acetyl-snglycero- 3-phosphocholine (Fig. 7.1). PAF is synthesized from a specific subclass of PtdCho, which contains an ether bond, rather than an ester bond at the sn-1 position of the glycerol backbone (Snyder, 1995; Bazan, 2003). PAF production is tightly regulated both at the synthetic and degradative levels. PAF is released by a wide variety of cells, including neural cells, macrophages, platelets, endothelial cells, mast cells, and neutrophils. It causes neutrophil adhesion, chemotaxis, increased vascular permeability, and vasodialation. Although the synthesizing enzymes have not been purified and fully characterized from brain tissue, reports on the synthesis of PAF in mammalian brain are beginning to emerge (Francescangeli et al., 2000). PAF is synthesized in neural cells either spontaneously or under appropriate stimulation. In neuronal and glial cell cultures, acetylcholine dramatically stimulates PAF synthesis, and addition of cholinergic receptor antagonist, atropine, produces the inhibition of PAF synthesis (Sogos et al., 1990). PAF induces a significant mobilization of intracellular free Ca2+, which is inhibited by PAF antagonists. The increase in Ca2+ is not only caused by the release from intracellular stores, but also through calcium influx via calcium channels. In neurons, PAF receptors are linked through guanine nucleotide-binding proteins (G proteins) to phospholipase C (PLC), and receptor-operated Ca2+ channels that are modulated by protein kinase C (PKC). Both PTX-sensitive and insensitive G proteins appear to be coupled with the PAF receptor, producing the activation of PLC and the increase in intracellular Ca2+. Thus, in neurons, PAF action is associated with PLC and PKC-mediated signal transduction processes (Yue et al., 1992; Farooqui et al., 2008). In astrocytes, PAF upregulates nerve growth factor mRNA in a time and concentration-dependent manner. This increase in nerve growth factor mRNA is suppressed by WEB 2086 and BN52021, potent PAF antagonists (Brodie, 1995; Yoshida et al., 2005). PAF may be involved in interactions between astroglial cells and neurons. Astrocytic PAF may provide a neurotrophic signal to injured neurons. It is suggested that interplay between PAF and the neurotrophic receptor may be involved in regenerative processes in the brain tissue. In brain, the physiological activity of PAF is not limited to its proinflammatory function, neurotoxicity, apoptosis, and blood–brain barrier permeability, but also associated with neurotrophic effects. In nonneural tissues, PAF is also involved in a variety of other settings including reproduction, allergic reactions, and circulatory system disturbances such as atherosclerosis (Chao and Olson, 1993; Honda et al., 2002; Bazan, 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asai K., Hirabayashi T., Houjou T., Uozumi N., Taguchi R., and Shimizu T. (2003). Human group IVC phospholipase A2 (cPLA2ɣ)–Roles in the membrane remodeling and activation induced by oxidative stress. J. Biol. Chem. 278:8809–8814.

    Article  PubMed  CAS  Google Scholar 

  • Baker P. R. S., Owen J. S., Nixon A. B., Thomas L. N., Wooten R., Daniel L. W., O’Flaherty J. T., and Wykle R. L. (2002). Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases. Biochim. Biophys. Acta Mol. Cell Res. 1592:175–184.

    CAS  Google Scholar 

  • Baker R. R. and Chang H. (1993). The potential for platelet-activating factor synthesis in brain: Properties of cholinephosphotransferase and 1-alkyl-sn-glycero-3-phosphate acetyltransferase in microsomal fractions of immature rabbit cerebral cortex. Biochim. Biophys. Acta Lipids Lipid Metab. 1170:157–164.

    Article  CAS  Google Scholar 

  • Baker R. R. and Chang H. (1998). MgATP has different inhibitory effects on the use of 1-acyl-lysophosphatidylcholine and lyso platelet-activating factor acceptors by neuronal nuclear acetyltransferase activities. Biochim. Biophys. Acta 1392:351–360.

    PubMed  CAS  Google Scholar 

  • Baker R. R. and Chang H. Y. (1996). Alkylglycerophosphate acetyltransferase and lyso platelet activating factor acetyltransferase, two key enzymes in the synthesis of platelet activating factor, are found in neuronal nuclei isolated from cerebral cortex. Biochim. Biophys. Acta 1302:257–263.

    PubMed  Google Scholar 

  • Baker R. R. and Chang H. Y. (2000). The regulation of CoA-independent transacylation reactions in neuronal nuclei by lysophospholipid, free fatty acid, and lysophospholipase: the control of nuclear lyso-platelet-activating factor metabolism. Mol. Cell. Biochem. 215:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Baker R. R. and Chang H. Y. (2002). MgATP may depress de novo neuronal nuclear PAF generation by promoting the formation of alkylacylglycerophosphate, an inhibitor of alkylglycerophosphate acetyltransferase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585:44–49.

    Article  CAS  Google Scholar 

  • Bazan N. G. (2003). Synaptic lipid signaling: Significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.

    Article  PubMed  CAS  Google Scholar 

  • Bernatchez P. N., Winstead M. V., Dennis E. A., and Sirois M. G. (2001). VEGF stimulation of endothelial cell PAF synthesis is mediated by group V 14 kDa secretory phospholipase A2. Brit. J. Pharmacol. 134:197–205.

    Article  CAS  Google Scholar 

  • Blank M. L., Lee Y. J., Cress E. A., and Snyder F. (1988). Stimulation of the de novo pathway for the biosynthesis of platelet-activating factor (PAF) via cytidylyltransferase activation in cells with minimal endogenous PAF production. J. Biol. Chem. 263:5656–5661.

    PubMed  CAS  Google Scholar 

  • Brodie C. (1995). Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci. Lett. 186:5–8.

    Article  PubMed  CAS  Google Scholar 

  • Chao W. and Olson M. S. (1993). Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292:617–629.

    PubMed  CAS  Google Scholar 

  • Chiba H., Michibata H., Wakimoto K., Seishima M., Kawasaki S., Okubo K., Mitsui H., Torii H., and Imai Y. (2004). Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2δ, induced in psoriatic skin. J. Biol. Chem. 279:12890–12897.

    Article  PubMed  CAS  Google Scholar 

  • Clark M. A., Conway T. M., Shorr R. G. L., and Crooke S. T. (1987). Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J. Biol. Chem. 262:4402–4406.

    PubMed  CAS  Google Scholar 

  • Collado A. P., Latorre E., Fernández I., Aragonés A. D., and Catalán R. E. (2003). Endothelin-1 decreases ethanolamine plasmalogen levels and evokes PAF production in brain microvessels. Microvasc. Res. 66:197–203.

    Article  PubMed  CAS  Google Scholar 

  • De Caterina, R., Cybulsky, M.I., Clinton, S.K., Gimbrone, M.A., and Libby, P. (1994) The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Atherioscler. Thromb. 14:1829–1836.

    CAS  Google Scholar 

  • Diaz-Arrastia R. and Scott K. S. (1999). Expression of cPLA2-β and cPLA2-ɣ, novel paralogs of group IV cytosolic phospholipase A2 in mammalian brain. Soc. Neurosci. Abs. 25:2206.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks (2008). Neurochemical Aspects of Excitotoxicity, pp. 1–290.Springer, New York.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000). Brain cytosolic phospholipase A2: Localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    Article  CAS  Google Scholar 

  • Flamand N., Lefebvre J., Lapointe G., Picard S., Lemieux L., Bourgoin S. G., and Borgeat P. (2006a). Inhibition of platelet-activating factor biosynthesis by adenosine and histamine in human neutrophils: involvement of cPLA2α and reversal by lyso-PAF. J. Leukocyte Biol. 79:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Flamand N., Picard S., Lemieux L., Pouliot M., Bourgoin S. G., and Borgeat P. (2006b). Effects of pyrrophenone, an inhibitor of group IVA phospholipase A2, on eicosanoid and PAF biosynthesis in human neutrophils. Brit. J. Pharmacol. 149:385–392.

    Article  CAS  Google Scholar 

  • Francescangeli E., Boila A., and Goracci G. (2000). Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem. Res. 25:705–713.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M., Loper R., Gelb M. H., and Leslie C. C. (2006). Identification of the expressed form of human cytosolic phospholipase A2β (cPLA2β)–cPLA2β3 is a novel variant localized to mitochondria and early endosomes. J. Biol. Chem. 281:16615–16624.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez R. and Aguilar J. (2001). Cytidine (5′) diphosphocholine-induced decrease in cerebral platelet activating factor is due to inactivation of its synthesizing enzyme cholinephosphotransferase in aged rats. Neurosci. Lett. 299:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Goracci G. and Francescangeli E. (1991). Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids 26:986–991.

    Article  PubMed  CAS  Google Scholar 

  • He X., Guan X. L., Ong W. Y., Farooqui A. A., and Wenk M. R. (2007). Expression, activity, and role of serine palmitoyltransferase in the rat hippocampus after kainate injury. J. Neurosci. Res. 85:423–432.

    Article  PubMed  CAS  Google Scholar 

  • Heller R., Bussolino F., Ghigo D., Garbarino G., Pescarmona G., Till U., and Bosia A. (1991). Stimulation of platelet-activating factor synthesis in human endothelial cells by activation of the de novo pathway. Phorbol 12-myristate 13-acetate activates 1-alkyl-2-lyso-sn-glycero-3-phosphate:acetyl-CoA acetyltransferase and dithiothreitol-insensitive 1-alkyl-2-acetyl-sn-glycerol:CDP-choline cholinephosphotransferase. J. Biol. Chem. 266:21358–21361.

    PubMed  CAS  Google Scholar 

  • Hirabayashi T., Murayama T., and Shimizu T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27:1168–1173.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi T. and Shimizu T. (2000). Localization and regulation of cytosolic phospholipase A2. Biochim. Biophys. Acta 1488:124–138.

    PubMed  CAS  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Kamal-Eldin A. and Yanishlieva N. V. (2002). N-3 fatty acids for human nutrition: Stability considerations. Eur. J. Lipid Sci. Technol. 104:825–836.

    Article  CAS  Google Scholar 

  • Karasawa K., Qiu X., and Lee T. (1999). Purification and characterization from rat kidney membranes of a novel platelet-activating factor (PAF)-dependent transacetylase that catalyzes the hydrolysis of PAF, formation of PAF analogs, and C2-ceramide. J. Biol. Chem. 274:8655–8661.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K., Matsumura K., Kataoka Y., Morii H., and Watanabe Y. (1999). Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.

    Article  PubMed  CAS  Google Scholar 

  • Lang P. A., Kempe D. S., Tanneur V., Eisele K., Klarl B. A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S. M., Lang F., and Wieder T. (2005). Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C., Malone B., Blank M. L., Fitzgerald V., and Snyder F. (1990). Regulation of the synthesis of platelet-activating factor and its inactive storage precursor (1-alkyl-2-acyl-sn-glycero-3-phosphocholine) from 1-alkyl-2-acetyl-sn-glycerol by rabbit platelets. J. Biol. Chem. 265:9181–9187.

    PubMed  CAS  Google Scholar 

  • Lee T. C., Malone B., Longobardi L., and Balestrieri M. L. (2001). Differential regulation of three catalytic activities of platelet-activating factor (PAF)-dependent transacetylase. Arch. Biochem. Biophys. 387:41–46.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C., Malone B., and Snyder F. (1986). A new de novo pathway for the formation of 1-alkyl-2-acetyl-sn-glycerols, precursors of platelet activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P/acetyl-CoA acetyltransferase in rat spleen. J. Biol. Chem. 261: 5373–5377.

    PubMed  CAS  Google Scholar 

  • Lee T. C., Malone B., and Snyder F. (1988). Formation of 1-alkyl-2-acetyl-sn-glycerols via the de novo biosynthetic pathway for platelet-activating factor. Characterization of 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase in rat spleens. J. Biol. Chem. 263:1755–1760.

    PubMed  CAS  Google Scholar 

  • Lee T. C., Malone B., Woodard D., and Snyder F. (1989). Renal necrosis and the involvement of a single enzyme of the de novo pathway for the biosynthesis of platelet-activating factor in the rat kidney inner medulla. Biochem. Biophys. Res. Commun. 163:1002–1005.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C., Ou M. C., Shinozaki K., Malone B., and Snyder F. (1996). Biosynthesis of N-acetylsphingosine by platelet-activating factor: Sphingosine CoA-independent transacetylase in HL-60 cels. J. Biol. Chem. 271:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C., Uemura Y., and Snyder F. (1992). A novel CoA-independent transacetylase produces the ethanolamine plasmalogen and acyl analogs of platelet-activating factor (PAF) with PAF as the acetate donor in HL-60 cells. J. Biol. Chem. 267:19992–20001.

    PubMed  CAS  Google Scholar 

  • Mayer K., Merfels M., Muhly-Reinholz M., Gokorsch S., Rosseau S., Lohmeyer J., Schwarzer N., Krull M., Suttorp N., Grimminger F., and Seeger W. (2002). Omega-3 Fatty acids suppress monocyte adhesion to human endothelial cells: role of endothelial PAF generation. Am. J. Physiol. Heart Circ. Physiol. 283:H811–H818.

    PubMed  CAS  Google Scholar 

  • McHowat J., and Creer M. H. (2001). Selective plasmalogen substrate utilization by thrombin-stimulated Ca2+-independent PLA2 in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 278:H1933–H1940.

    Google Scholar 

  • McHowat J., Kell P. J., O’Neill H. B., and Creer M. H. (2001). Endothelial cell PAF synthesis following thrombin stimulation utilizes Ca2+-independent phospholipase A2. Biochemistry 40:14921–14931.

    Article  PubMed  CAS  Google Scholar 

  • Mosior M., Six D. A., and Dennis E. A. (1998). Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4, 5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273:2184–2191.

    Article  PubMed  CAS  Google Scholar 

  • Nixon A. B., O’Flaherty J. T., Salyer J. K., and Wykle R. L. (1999). Acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase is directly activated by p38 kinase. J. Biol. Chem. 274:5469–5473.

    Article  PubMed  CAS  Google Scholar 

  • Nomikos T. N., Iatrou C., and Demopoulos C. A. (2003). Acetyl-CoA/1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity in cortical and medullary human renal tissue. Eur. J. Biochem. 270:2992–3000.

    Article  PubMed  CAS  Google Scholar 

  • Ohto T., Uozumi N., Hirabayashi T., and Shimizu T. (2005). Identification of novel cytosolic phospholipase A2s, murine cPLA2δ, ε, and ζ, which form a gene cluster with cPLA2β. J. Biol. Chem. 280:24576–24583.

    Article  PubMed  CAS  Google Scholar 

  • Ong W. Y., Sandhya T. L., Horrocks L. A., and Farooqui A. A. (1999). Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J. Hirnforsch. 39:391–400.

    PubMed  Google Scholar 

  • Owada Y., Tominaga T., Yoshimoto T., and Kondo H. (1994). Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Mol. Brain Res. 25:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Panwala C. M., Jones J. C., and Viney J. L. (1998). A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161:5733–5744.

    PubMed  CAS  Google Scholar 

  • Pardue S., Rapoport S. I., and Bosetti F. (2003). Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey cerebellum. Molec. Brain Res. 116:106–114.

    Article  PubMed  CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J. H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J. Biol. Chem. 279:11320–11326.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1990). Platelet-activating factor. J. Biol. Chem. 265:17381–17384.

    PubMed  CAS  Google Scholar 

  • Prescott S. M., Zimmerman G. A., Stafforini D. M., and McIntyre T. M. (2000). Platelet-activating factor and related lipid mediators. Annu. Rev. Biochem. 69:419–445.

    Article  PubMed  CAS  Google Scholar 

  • Rubin B. B., Downey G. P., Koh A., Degousee N., Ghomashchi F., Nallan L., Stefanski E., Harkin D. W., Sun C. X., Smart B. P., Lindsay T. F., Cherepanov V., Vachon E., Kelvin D., Sadilek M., Brown G. E., Yaffe M. B., Plumb J., Grinstein S., Glogauer M., and Gelb M. H. (2005). Cytosolic phospholipase A2–α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection–cPLA2–α does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H., Tosaki T., and Nakagawa Y. (2002). Overexpression of phospholipid hydroperoxide glutathione peroxidase modulates acetyl-CoA, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase activity. J. Biol. Chem. 277:50431–50438.

    Article  PubMed  CAS  Google Scholar 

  • Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.

    Article  PubMed  CAS  Google Scholar 

  • Shikano M., Masuzawa Y., and Yazawa K. (1993). Effect of docosahexaenoic acid on the generation of platelet-activating factor by eosinophilic leukemia cells, Eol-1. J. Immunol. 150:3525–3533.

    PubMed  CAS  Google Scholar 

  • Shindou H., Hishikawa D., Nakanishiu H., Harayama T., Ishii S., Taguchi R., and Shimizu T. (2007). A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells–Cloning and characterization of acetyl-CoA/lyso-PAF acetyltransferase. J. Biol. Chem. 282:6532–6539.

    Article  PubMed  CAS  Google Scholar 

  • Shirai Y. and Ito M. (2004). Specific differential expression of phospholipase A2 subtypes in rat cerebellum. J. Neurocytol. 33:297–307.

    Article  PubMed  CAS  Google Scholar 

  • Smiley P. L., Stremler K. E., Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1991). Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor. J. Biol. Chem. 266:11104–11110.

    PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: The biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Snyder F. (1997). CDP-choline/alkylacetylglycerol cholinephosphotransferase catalyzes the final step in the de novo synthesis of platelet-activating factor. Biochim. Biophys. Acta 1348:111–116.

    PubMed  CAS  Google Scholar 

  • Snyder F., Fitzgerald V., and Blank M. L. (1996). Biosynthesis of platelet-activating factor and enzyme inhibitors. Adv. Exp. Med. Biol. 416:5–10.

    PubMed  CAS  Google Scholar 

  • Sogos V., Bussolino F., Pilia E., Torelli S., and Gremo F. (1990). Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J. Neurosci. Res. 27:706–711.

    Article  PubMed  CAS  Google Scholar 

  • Song C., Chang X. J., Bean K. M., Proia M. S., Knopf J. L., and Kriz R. W. (1999). Molecular characterization of cytosolic phospholipase A2–β. J. Biol. Chem. 274:17063–17067.

    Article  PubMed  CAS  Google Scholar 

  • Stafforini D. M., McIntyre T. M., Carter M. E., and Prescott S. M. (1987). Human plasma platelet-activating factor acetylhydrolase association with lipoprotein particles and role in the degradation of platelet-activating factor. J. Biol. Chem. 262:4215–4222.

    PubMed  CAS  Google Scholar 

  • Stafforini D. M., Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1996). Mammalian platelet-activating factor acetylhydrolases. Biochim. Biophys. Acta 1301:161–173.

    PubMed  Google Scholar 

  • Stephenson D., Rash K., Smalstig B., Roberts E., Johnstone E., Sharp J., Panetta J., Little S., Kramer R., and Clemens J. (1999). Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128.

    Article  PubMed  CAS  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Brit. J. Pharmacol. 139:1014–1022.

    Article  CAS  Google Scholar 

  • Tanaka T., Iimori M., Tsukatani H., and Tokumura A. (1994). Platelet-aggregating effects of platelet-activating factor-like phospholipids formed by oxidation of phosphatidylcholines containing an sn-2-polyunsaturated fatty acyl group. Biochim. Biophys. Acta Lipids Lipid Metab. 1210:202–208.

    Article  CAS  Google Scholar 

  • Tosaki T., Sakamoto H., Kitahara J., Imai H., and Nakagawa Y. (2007). Enhancement of acetyl-CoA: 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase activity by hydrogen peroxide. Biol. Pharm. Bull. 30:272–278.

    Article  PubMed  CAS  Google Scholar 

  • Vallari D. S., Record M., and Snyder F. (1990). Conversion of alkylacetylglycerol to platelet-activating factor in HL-60 cells and subcellular localization of the mediator. Arch. Biochem. Biophys. 276:538–545.

    Article  PubMed  CAS  Google Scholar 

  • Woodard D. S., Lee T. C., and Snyder F. (1987). The final step in the de novo biosynthesis of platelet-activating factor. Properties of a unique CDP-choline/1-alkyl-2-acetyl-sn-glycerol choline-phosphotransferase in microsomes from the renal inner medulla of rats. J. Biol. Chem. 262:2520–2527.

    PubMed  CAS  Google Scholar 

  • Yoshida H., Imaizumi T., Tanji K., Sakaki H., Metoki N., Hatakeyama M., Yamashita K., Ishikawa A., Taima K., Sato Y., Kimura H., and Satoh K. (2005). Platelet-activating factor enhances the expression of nerve growth factor in normal human astrocytes under hypoxia. Molec. Brain Res. 133:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Yue T. L., Stadel J. M., Sarau H. M., Friedman E., Gu J. L., Powers D. A., Gleason M. M., Feuerstein G., and Wang H. Y. (1992). Platelet-activating factor stimulates phosphoinositide turnover in neurohybrid NCB-20 cells: Involvement of pertussis toxin-sensitive guanine nucleotide-binding proteins and inhibition by protein kinase C. Molec. Pharmacol. 41:281–289.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Synthesis of Platelet-Activating Factor in Brain. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_7

Download citation

Publish with us

Policies and ethics