Skip to main content

Roles of Plasmalogens in Brain

  • Chapter
  • 588 Accesses

Plasmalogens play important roles in mammalian brain (Lee, 1998; Nagan and Zoeller, 2001; Farooqui and Horrocks, 2001). Beside being a structural component of cellular membranes and a major reservoir for arachidonic and docosahexaenoic acids (AA and DHA), plasmalogens are also involved in transport of ions across plasma membranes (Gross, 1985), membrane fusion (Lohner, 1996), protection of cellular membranes against oxidative stress (Zoeller et al., 1988; Engelmann et al., 1994), and the efflux of cholesterol from cells mediated by high-density lipoprotein (HDL) (Fig. 5.1) (Mandel et al., 1998). Plasmalogens are also found in the nucleus, where they may be involved in cellular differentiation (Bichenkov and Ellingson, 1999; Albi et al., 2004). The occurrence of plasmalogens in the synaptic cleft suggests that these phospholipids not only play an important role in synaptogenesis, but may also be involved in vesicle formation during neurotransmitter release (Farooqui and Horrocks, 2001). Plasmalogens may also be important in membrane dynamics, allowing the formation of inverted hexagonal structures, a property that may not only contribute to membrane fusion property, but also be important in modulating the membrane fluidity and permeability (Lohner, 1996).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar N., Gregoire S., Andre A., Juaneda P., Joffre C., Bron A. M., Creuzot-Garcher C. P., and Bretillon L. (2007). Plasmalogens in the retina: In situ hybridization of dihydroxyacetone phosphate acyltransferase (DHAP-AT)–the first enzyme involved in their biosynthesis–and comparative study of retinal and retinal pigment epithelial lipid composition. Exp. Eye Res. 84:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Akbar M., Calderon F., Wen Z. M., and Kim H. Y. (2005). Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.

    Article  PubMed  CAS  Google Scholar 

  • Albert C. J., Crowley J. R., Hsu F. F., Thukkani A. K., and Ford D. A. (2002). Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens–Disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes. J. Biol. Chem. 277:4694–4703.

    Article  PubMed  CAS  Google Scholar 

  • Albert C. J., Thukkani A. K., Heuertz R. M., Slungaard A., Hazen S. L., and Ford D. A. (2003). Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde. J. Biol. Chem. 278:8942–8950.

    Article  PubMed  CAS  Google Scholar 

  • Albert C. J., Anbukumar D. S., Monda J. K., Eckelkamp J. T., and Ford D. A. (2007). Myocardial lipidomics. Developments in myocardial nuclear lipidomics. Front. Biosci. 12:2750–2760.

    Article  PubMed  CAS  Google Scholar 

  • Albi E., Cataldi S., Magni M. V., and Sartori C. (2004). Plasmalogens in rat liver chromatin: New molecules involved in cell proliferation. J. Cell. Physiol. 201:439–446.

    Article  PubMed  CAS  Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.

    Article  PubMed  CAS  Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: A specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Basu S. (2004). Isoprostanes: Novel bioactive products of lipid peroxidation. Free Radic. Res. 38:105–122.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Berry K. A. Z. and Murphy R. C. (2005). Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: Structure determination by mass spectrometry. Antioxidants and Redox Signaling 7:157–169.

    Article  Google Scholar 

  • Bichenkov E. and Ellingson J. S. (1999). Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem. Res. 24:1549–1556.

    Article  PubMed  CAS  Google Scholar 

  • Bick R. J., Youker K. A., Pownall H. J., Van Winkle W. B., and Entman M. L. (1991). Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein. Arch. Biochem. Biophys. 286:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Buddecke E. and Andresen G. (1959). Quantitative bestimmung der acetalphosphatide (plasmalogene) in der aorta des menschen unter berucksichtigung der arteriosklerose. Hoppe-Seyler’s Z. Physiol. Chem. 314:38–45.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2004). n-3 Fatty acids, inflammation, and immunity–Relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.

    Article  PubMed  CAS  Google Scholar 

  • Calzada C., Bruckdorfer K. R., and Rice-Evans C. A. (1997). The influence of antioxidant nutrients on platelet function in healthy volunteers. Atherosclerosis 128:97–105.

    Article  PubMed  CAS  Google Scholar 

  • Chalimoniuk M., King-Pospisil K., Pedersen W. A., Malecki A., Wylegala E., Mattson M. P., Hennig B., and Toborek M. (2004). Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism. J. Neurochem. 90:629–636.

    Article  PubMed  CAS  Google Scholar 

  • Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J. C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.

    PubMed  CAS  Google Scholar 

  • Chilton F. H., Fonteh A. N., Surette M. E., Triggiani M., and Winkler J. D. (1996). Control of arachidonate levels within inflammatory cells. Biochim. Biophys. Acta 1299:1–15.

    PubMed  Google Scholar 

  • Choi Y. S., Goto S., Ikeda I., and Sugano M. (1989). Effect of dietary n-3 polyunsaturated fatty acids on cholesterol synthesis and degradation in rats of different ages. Lipids 24:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Clark K. J. and Murray A. W. (1995). Evidence that the bradykinin-induced activation of phospholipase D and of the mitogen-activated protein kinase cascade involve different protein kinase C isoforms. J. Biol. Chem. 270:7097–7103.

    PubMed  CAS  Google Scholar 

  • Coleman R. A., Smith W. L., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.

    PubMed  CAS  Google Scholar 

  • Collado A. P., Latorre E., Fernández I., Aragonés A. D., and Catalán R. E. (2003). Endothelin-1 decreases ethanolamine plasmalogen levels and evokes PAF production in brain microvessels. Microvasc. Res. 66:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Daniel L. W., Small G. W., and Schmitt J. D. (1988). Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem. Biophys. Res. Commun. 151:291–297.

    Article  PubMed  CAS  Google Scholar 

  • Davies S. S., Amarnath V., and Roberts II L. J., (2004). Isoketals: Highly reactive ɣ-ketoaldehydes formed from the H2-isoprostane pathway. Chem. Phys. Lipids 128:85–99.

    Article  PubMed  CAS  Google Scholar 

  • Doolan C. M. and Keenan A. K. (1994). Inhibition by fatty acids of cyclic AMP-dependent protein kinase activity in brush border membranes isolated from human placental vesicles. Brit. J. Pharmacol. 111:509–514.

    CAS  Google Scholar 

  • Duhm J., Engelmann B., Schönthier U. M., and Streich S. (1993). Accelerated maximal velocity of the red blood cell Na+/K+ pump in hyperlipidemia is related to increase in 1-palmitoyl-2-arachidonoyl-plasmalogen phosphatidylethanolamine. Biochim. Biophys. Acta Biomembr. 1149:185–188.

    Article  CAS  Google Scholar 

  • Duncan R. E., El Sohemy A., and Archer M. C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann B. (2004). Plasmalogens: Targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann B., Streich S., Schönthier U. M., Richter W. O., and Duhm J. (1992). Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:32–37.

    Article  CAS  Google Scholar 

  • Engelmann B., Bräutigam C., and Thiery J. (1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.

    Article  PubMed  CAS  Google Scholar 

  • Ernster L., Forsmark P., and Nordenbrand K. (1992). The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. BioFactors 3:241–248.

    PubMed  CAS  Google Scholar 

  • Esterbauer H., Schaur R. J., and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81–128.

    Article  PubMed  CAS  Google Scholar 

  • Fam S. S. and Morrow J. D. (2003). The isoprostanes: Unique products of arachidonic acid oxidation–A review. Curr. Med. Chem. 10:1723–1740.

    Article  PubMed  CAS  Google Scholar 

  • Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J. E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 97:6362–6366.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (Eds.), Handbook of Essential Fatty Acid Biology. Humana, Totowa, NJ, pp. 277–295.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: A matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Fauconneau B., Stadelmann-Ingrand S., Favrelière S., Baudouin J., Renaud L., Piriou A., and Tallineau C. (2001). Evidence against a major role of plasmalogens in the resistance of astrocytes in lactic acid-induced oxidative stress in vitro. Arch. Toxicol. 74:695–701.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom J. D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.

    Article  PubMed  CAS  Google Scholar 

  • Ford D. A. and Hale C. C. (1996). Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett. 394:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K., Yao K., Miyazaki T., Hirano H., Nishikawa M., Kimura S., Murayama K., and Nonaka M. (1989). The effect of dietary docosahexaenoate on the learning ability of rats. In: Chandra R. K. (Ed.), Health Effects of Fish and Fish Oils. ARTS Biomedical, The Netherlands, pp. 275–284.

    Google Scholar 

  • Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Brit. J. Pharmacol. 132:1417–1422.

    Article  CAS  Google Scholar 

  • Gamberucci A., Fulceri R., Bygrave F. L., and Benedetti A. (1997). Unsaturated fatty acids mobilize intracellular calcium independent of IP3 generation and VIA insertion at the plasma membrane. Biochem. Biophys. Res. Commun. 241:312–316.

    Article  PubMed  CAS  Google Scholar 

  • Garrido R., Mattson M. P., Hennig B., and Toborek M. (2001). Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76:1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Glaser P. E. and Gross R. W. (1995). Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: Discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203.

    Article  PubMed  CAS  Google Scholar 

  • Gorgas K., Teigler A., Komljenovic D., and Just W. W. (2006). The ether lipid-deficient mouse: Tracking down plasmalogen functions. Biochim. Biophys. Acta Mol. Cell Res. 1763:1511–1526.

    Article  CAS  Google Scholar 

  • Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.

    Article  PubMed  CAS  Google Scholar 

  • Habib A. and Badr K. F. (2004). Molecular pharmacology of isoprostanes in vascular smooth muscle. Chem. Phys. Lipids 128:69–73.

    Article  PubMed  CAS  Google Scholar 

  • Hahnel D., Thiery J., Brosche T., and Engelmann B. (1999). Role of plasmalogens in the enhanced resistance of LDL to copper-induced oxidation after LDL apheresis. Arterioscler. Thromb. Vasc. Biol. 19:2431–2438.

    PubMed  CAS  Google Scholar 

  • Heinle H., Gugeler N., Felde R., Okech D., and Spiteller G. (2000). Oxidation of plasmalogens produces highly effective modulators of macrophage function. Z. Naturforsch. [C] 55:115–120.

    CAS  Google Scholar 

  • Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J. Pharmacol. Sci. 92:308–316.

    Article  PubMed  CAS  Google Scholar 

  • Hofer G., Lichtenberg D., Kostner G. M., and Hermetter A. (1996). Oxidation of fluorescent glycero- and sphingophospholipids in human plasma lipoproteins: Alkenylacyl subclasses are preferred targets. Clin. Biochem. 29:445–450.

    Article  PubMed  CAS  Google Scholar 

  • Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J. N. and Ansell G. B. (Eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical, Amsterdam, pp. 51–93.

    Chapter  Google Scholar 

  • Hughson F. M. (1995). Molecular mechanisms of protein-mediated membrane fusion. Curr. Opin. Struct. Biol. 5:507–513.

    Article  PubMed  CAS  Google Scholar 

  • Jansen G. A. and Wanders R. J. A. (1997). Plasmalogens and oxidative stress: Evidence against a major role of plasmalogens in protection against the superoxide anion radical. J. Inherit. Metab. Dis. 20:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Jump D. B., Clarke S. D., Thelen A., and Liimatta M. (1994). Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35:1076–1084.

    PubMed  CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N. and Mattson M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev. Neurosci. 9:105–116.

    PubMed  CAS  Google Scholar 

  • Khaselev N. and Murphy R. C. (1999). Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic. Biol. Med. 26:275–284.

    Article  PubMed  CAS  Google Scholar 

  • Lahaie I., Hardy P., Hou X., Hassessian H., Asselin P., Lachapelle P., Almazan G., Varma D. R., Morrow J. D., Roberts II L. J., and Chemtob S. (1998). A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F22 on retinal vessels. Am. J. Physiol. 274:R1406–R1416.

    PubMed  CAS  Google Scholar 

  • Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.

    Article  CAS  Google Scholar 

  • Leray C., Cazenave J. P., and Gachet C. (2002). Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens. Lipids 37:285–290.

    Article  PubMed  CAS  Google Scholar 

  • Lessig J., Schiller J., Arnhold J., and Fuchs B. (2007). Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J. Lipid Res. 48:1316–1324.

    Article  PubMed  CAS  Google Scholar 

  • Li Q. R., Zhang Q., Wang M., Zhao S. M., Ma J., Luo N., Li N., Li Y. S., Xu G. W., and Li J. S. (2007). Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 89:169–177.

    Article  PubMed  CAS  Google Scholar 

  • Lin D., Lee H. G., Liu Q., Perry G., Smith M. A., and Sayre L. M. (2005). 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1219–1231.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. X., Li L. P., and Augustus L. (2001). Prostaglandin release by spinal cord injury mediates production of hydroxyl radical, malondialdehyde and cell death: A site of the neuroprotective action of methylprednisolone. J. Neurochem. 77:1036–1047.

    Article  PubMed  CAS  Google Scholar 

  • Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81:167–184.

    Article  PubMed  CAS  Google Scholar 

  • Lohner K., Balgavy P., Hermetter A., Paltauf F., and Laggner P. (1991). Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. Biochim. Biophys. Acta 1061:132–140.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2003). Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J. Lipid Res. 44:164–171.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R., Maeda T., Kinoshita M., Takao K., Takenaka H., Kusano J., Yoshimura N., Takeoka Y., Yasuda D., Okazaki T., and Teramoto T. (2007). Plasmalogens in human serum positively correlate with high-density lipoprotein and decrease with aging. J. Atheroscler. Thromb. 14:12–18.

    PubMed  CAS  Google Scholar 

  • Mandel H., Sharf R., Berant M., Wanders R. J. A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.

    Article  PubMed  CAS  Google Scholar 

  • McHowat J., Liu S., and Creer M. H. (1998). Selective hydrolysis of plasmalogen phospholipids by Ca2+-independent PLA2 in hypoxic ventricular myocytes. Am. J. Physiol. Cell Physiol. 274:C1727–C1737.

    CAS  Google Scholar 

  • Morrow J. D., Awad J. A., Wu A., Zackert W. E., Daniel V. C., and Roberts II L. J. (1996). Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J. Biol. Chem. 271:23185–23190.

    Article  PubMed  CAS  Google Scholar 

  • Morrow J. D., Tapper A. R., Zackert W. E., Yang J., Sanchez S. C., Montine T. J., and Roberts II L. J. (1999). Formation of novel isoprostane-like compounds from docosahexaenoic acid. Adv. Exp. Med. Biol. 469:343–347.

    PubMed  CAS  Google Scholar 

  • Munn N. J., Arnio E., Liu D., Zoeller R. A., and Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J. Lipid Res. 44:182–192.

    Article  PubMed  CAS  Google Scholar 

  • Nagan N. and Zoeller R. A. (2001). Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 40:199–229.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K., Yasugi E., Morita H., Dohi T., and Oshima M. (1994). Plasmenylethanolamine in human intestinal mucosa detected by an improved method for analysis of phospholipid. Biochem. Mol. Biol. Int. 33:457–462.

    PubMed  CAS  Google Scholar 

  • Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J. Physiol. (Lond.) 475:83–93.

    CAS  Google Scholar 

  • Nourooz-Zadeh J., Liu E. H. C., Yhlen B., Änggård E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72:734–740.

    Article  PubMed  CAS  Google Scholar 

  • Opere C. A., Zheng W. D., Huang J. F., Adewale A., Kruglet M., and Ohia S. E. (2005). Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: Role of arachidonic acid metabolites. Neurochem. Res. 30:129–137.

    Article  PubMed  CAS  Google Scholar 

  • Page S., Fischer C., Baumgartner B., Haas M., Kreusel U., Loidl G., Hayn M., Ziegler-Heitbrock H. W., Neumeier D., and Brand K. (1999). 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis. J. Biol. Chem. 274:11611–11618.

    Article  PubMed  CAS  Google Scholar 

  • Parlati F., McNew J. A., Fukuda R., Miller R., Sollner T. H., and Rothman J. E. (2000). Topological restriction of SNARE-dependent membrane fusion. Nature 407:194–198.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Pike L. J., Han X., Chung K. N., and Gross R. W. (2002). Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: A quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088.

    Article  PubMed  CAS  Google Scholar 

  • Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J. Biol. Chem. 271:15451–15457.

    Article  PubMed  CAS  Google Scholar 

  • Rao K. V., Vaidyanathan V. V., and Sastry P. S. (1994). Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J. Neurochem. 63:1454–1459.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Reiss D., Beyer K., and Engelmann B. (1997). Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323:807–814.

    PubMed  CAS  Google Scholar 

  • Roberts II L. J. and Fessel J. P. (2004). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Roberts II L. J., Montine T. J., Markesbery W. R., Tapper A. R., Hardy P., Chemtob S., Dettbarn W. D., and Morrow J. D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.

    Article  PubMed  CAS  Google Scholar 

  • Rossi M. A., Di Mauro C., and Dianzani M. U. (1993). Action of lipid peroxidation products on phosphoinositide specific phospholipase C. Mol. Aspects Med. 14:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Sakata A., Ida E., Tominaga M., and Onoue K. (1987). Arachidonic acid acts as an intracellular activator of NADPH-oxidase in Fc gamma receptor-mediated superoxide generation in macrophages. J. Immunol. 138:4353–4359.

    PubMed  CAS  Google Scholar 

  • Sasaki Y., Asaoka Y., and Nishizuka Y. (1993). Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. FEBS Lett. 320:47–51.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer D. B. and Andersen O. S. (1989). Platelet-activating factor is a general membrane perturbant. Biochim. Biophys. Acta 987:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2004). A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: Missing links to resolution. Histochem. Cell Biol. 122:305–321.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    Article  PubMed  CAS  Google Scholar 

  • Sindelar P. J., Guan Z. Z., Dallner G., and Ernster L. (1999). The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26:318–324.

    Article  PubMed  CAS  Google Scholar 

  • Songur A., Sarsilmaz M., Sogut S., Ozyurt B., Ozyurt H., Zararsiz I., and Turkoglu A. O. (2004). Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with fish ω-3 fatty acids. Prog. Neuropsychopharmacol. Biol. Psychiatry 28:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Stadelmann-Ingrand S., Pontcharraud R., and Fauconneau B. (2004). Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem. Phys. Lipids 131:93–105.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. (In press).

    Google Scholar 

  • Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J. D., Roberts L. J., Hoover R. L., and Badr K. F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 90:136–141.

    Article  PubMed  CAS  Google Scholar 

  • Tanford C. (1980). The Hydrophobic Effects: Formation of Micelles and Biological Membranes. Wiley, New York.

    Google Scholar 

  • Toborek M., Garrido R., Malecki A., Kaiser S., Mattson M. P., Hennig B., and Young B. (2000). Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp. Neurol. 161:609–620.

    Article  PubMed  CAS  Google Scholar 

  • Uemura Y., Lee T. C., and Snyder F. (1991). A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor (PAF) by generating the lyso-PAF intermediate in the remodeling pathway. J. Biol. Chem. 266:8268–8272.

    PubMed  CAS  Google Scholar 

  • Weisser M., Vieth M., Stolte M., Riederer P., Pfeuffer R., Leblhuber F., and Spiteller G. (1997). Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem. Phys. Lipids 90:135–142.

    Article  PubMed  CAS  Google Scholar 

  • West J. D. and Marnett L. J. (2005). Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1642–1653.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J., Duzgunes N., Hoekstra D., and Papahadjopoulos D. (1985). Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 24:8–14.

    Article  PubMed  CAS  Google Scholar 

  • Winkler J. D., Eris T., Sung C. M., Chabot-Fletcher M., Mayer R. J., Surette M. E., and Chilton F. H. (1996). Inhibitors of coenzyme A-independent transacylase induce apoptosis in human HL-60 cells. J. Pharmacol. Exp. Ther. 279:956–966.

    PubMed  CAS  Google Scholar 

  • Wu M., Harvey K. A., Ruzmetov N., Welch Z. R., Sech L., Jackson K., Stillwell W., Zaloga G. P., and Siddiqui R. A. (2005). Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J. Cancer 117:340–348.

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.

    Article  PubMed  CAS  Google Scholar 

  • Yavin E. and Gatt S. (1972). Oxygen-dependent cleavage of the vinyl ether linkage of plasmalogens. 2. Identification of the low molecular weight active component and the reaction mechanism. Eur. J. Biochem. 25:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    Article  PubMed  CAS  Google Scholar 

  • Yin H. Y., Musiek E. S., Gao L., Porter N. A., and Morrow J. D. (2005). Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo. J. Biol. Chem. 280:26600–26611.

    Article  PubMed  CAS  Google Scholar 

  • Young C., Gean P. W., Chiou L. C., and Shen Y. Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.

    Article  PubMed  CAS  Google Scholar 

  • Zarrouki B., Soares A. F., Guichardant M., Lagarde M., and Geloen A. (2007). The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3T3–L1 adipose cell. FEBS Lett. 581:2394–2400.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J. C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.

    PubMed  CAS  Google Scholar 

  • Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988). A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263:11590–11596.

    PubMed  CAS  Google Scholar 

  • Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., and Imaizumi K. (1995). Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic. Biol. Med. 18:599–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Roles of Plasmalogens in Brain. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_5

Download citation

Publish with us

Policies and ethics