Skip to main content

Perspective and Directions for Future Developments on Ether Lipids

  • Chapter
Metabolism and Functions of Bioactive Ether Lipids in the Brain
  • 576 Accesses

Neural membranes contain glycerophospholipids, sphingolipids, cholesterol, and proteins. These lipids are asymmetrically distributed between the two leaflets of lipid bilayers (Ikeda et al., 2006; Yamaji-Hasegawa and Tsujimoto, 2006). Glycerophospholipids and sphingolipids contribute to the lipid asymmetry, while cholesterol and sphingolipids form lipid microdomains or lipid rafts. Glycerophospholipids are made up of glycerol backbone, fatty acids, phosphoric acid, and nitrogenous base. Depending on the substituent at the sn-1 position of glycerol moiety, glycerophospholipids are classified into two groups. One group is represented by glycerophospholipids that contain ester bond at the sn-1 position, and the other group is represented by glycerophospholipids that contain ether bond at the sn-1 position. Ester bond containing glycerophospholipids include phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns), whereas ether bond containing glycerophospholipids include plasmalogens, platelet-activating factor (PAF) and its analogs (Farooqui and Horrocks, 2001). PtdCho is mainly located in the outer leaflet, whereas PtdSer, PtdEtn, and PtdIns are mainly located in the inner leaflet (Farooqui and Horrocks, 2007; Farooqui and Horrocks, 2008). Among ether lipids, choline plasmalogen (PlsCho) is located in the outer leaflet, whereas ethanolamine plasmalogen is mainly associated with the inner leaflet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.

    PubMed  Google Scholar 

  • Alcon S., Morales S., Camello P. J., and Pozo M. J. (2002). Contribution of different phospholipases and arachidonic acid metabolites in the response of gallbladder smooth muscle to cholecystokinin. Biochem. Pharmacol. 64:1157–1167.

    Article  PubMed  CAS  Google Scholar 

  • Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.

    Article  CAS  Google Scholar 

  • Bae K., Longobardi L., Karasawa K., Malone B., Inoue T., Aoki J., Arai H., Inoue K., and Lee T. (2000). Platelet-activating factor (PAF)-dependent transacetylase and its relationship with PAF acetylhydrolases. J. Biol. Chem. 275:26704–26709.

    PubMed  CAS  Google Scholar 

  • Bernatchez P. N., Tremblay F., Rollin S., Neagoe P. E., and Sirois M. G. (2003). Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: Role in cellular migration. J. Cell. Biochem. 90:719–731.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovic N., Bretillon L., Lund E. G., Diczfalusy U., Lannfelt L., Winblad B., Russell D. W., and Björkhem I. (2001). On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 314:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F., Bell J. M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A., Perluigi M., and Sultana R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol. 545:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Chalfant C. E. and Spiegel S. (2005). Sphingosine 1-phosphate and ceramide 1-phosphate: Expanding roles in cell signaling. J. Cell Sci. 118:4605–4612.

    Article  PubMed  CAS  Google Scholar 

  • Chang J. Y., Chavis J. A., Liu L. Z., and Drew P. D. (1998). Cholesterol oxides induce programmed cell death in microglial cells. Biochem. Biophys. Res. Commun. 249:817–821.

    Article  PubMed  CAS  Google Scholar 

  • Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S. and Salvemini D. (2007). Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 71:290–297.

    Article  PubMed  CAS  Google Scholar 

  • Dennis E. A., Brown H. A., Deems R. A., Glass C. K., Merrill A. H. J., Murphy R. C., Raetz C. R. H., Shaw W., Subramaniam S., Russell D. W., VanNieuwenhze M. S., White S. H., Witztum J. L., and Wooley J. (2006). The LIPID MAPS approach to lipidomics. In: Feng L. and Prestwich G. D. (eds.), Functional Lipidomics. CRC, Boca Raton, FL, pp. 1–15.

    Google Scholar 

  • Esposito G., Giovacchini G., Der M., Liow J. S., Bhattacharjee A. K., Ma K., Herscovitch P., Channing M., Eckelman W. C., Hallett M., Carson R. E., and Rapoport S. I. (2007). Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. Neuroimage 34:1342–1351.

    Article  PubMed  Google Scholar 

  • Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. 6:177–184.

    CAS  Google Scholar 

  • Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999). Inhibitors of intracellular phospholipase A2 activity: Their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49:139–153.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Farooqui T., and Horrocks L. A. (2002). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp. 147–158.

    Chapter  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders. Springer, Berlin Heidelberg, New York, pp. 1–394.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2008). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry Lajtha, A. In Press Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Fonteh A.N., Harrington R.J., Huhmer A.F., Biringer R.G., Riggins J.N., Harrington M.G. (2006). Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis. Markers 22:39–64.

    PubMed  CAS  Google Scholar 

  • Forrester J. S., Milne S. B., Ivanova P. T., and Brown H. A. (2004). Computational lipidomics: A multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Molec. Pharmacol. 65:813–821.

    Article  CAS  Google Scholar 

  • Gonzalez-Alegre P. (2007). Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol. Ther. 114:34–55.

    Article  PubMed  CAS  Google Scholar 

  • Grimm M. O. W., Grimm H. S., Pätzold A. J., Zinser E. G., Halonen R., Duering M., Tschäpe J. A., De Strooper B., Müller U., Shen J., and Hartmann T. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat. Cell Biol. 7:1118–1123.

    Article  PubMed  CAS  Google Scholar 

  • Gross R. W., Jenkins C. M., Yang J. Y., Mancuso D. J., and Han X. L. (2005). Functional lipidomics: The roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat. 77:52–64.

    Article  PubMed  CAS  Google Scholar 

  • Guan X. L., He X., Ong W. Y., Yeo W. K., Shui G. H., and Wenk M. R. (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J. 20:1152–1161.

    Article  PubMed  CAS  Google Scholar 

  • Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J. (2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease–Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural Transm. 109:837–855.

    Article  PubMed  CAS  Google Scholar 

  • Han X. L. (2007). Neurolipidomics: Challenges and developments. Front. Biosci. 12:2601–2615.

    Article  PubMed  CAS  Google Scholar 

  • Han X. L. and Gross R. W. (2005). Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics 2:253–264.

    Article  PubMed  CAS  Google Scholar 

  • He X., Jenner A.M., Ong W.Y., Farooqui A.A., and Patel S.C. (2006) Lovasatatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J. Neuropath. Exp. Neurol. 65:652–663.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.

    Article  PubMed  CAS  Google Scholar 

  • Hovland A. R., Nahreini P., Andreatta C. P., Edwards-Prasad J., and Prasad K. N. (2001). Identifying genes involved in regulating differentiation of neuroblastoma cells. J. Neurosci. Res. 64:302–310.

    Article  CAS  Google Scholar 

  • Ikeda M., Kihara A., and Igarashi Y. (2006). Lipid asymmetry of the eukaryotic plasma membrane: Functions and related enzymes. Biol. Pharm. Bull. 29:1542–1546.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova P. T., Milne S. B., Forrester J. S., and Brown H. A. (2004). Lipid arrays: New tools in the understanding of membrane dynamics and lipid signaling. Molec. Interventions 4:86–96.

    Article  CAS  Google Scholar 

  • Karasawa K., Qiu X., and Lee T. (1999). Purification and characterization from rat kidney membranes of a novel platelet-activating factor (PAF)-dependent transacetylase that catalyzes the hydrolysis of PAF, formation of PAF analogs, and C2-ceramide. J. Biol. Chem. 274:8655–8661.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A. and Igarashi Y. (2004). Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol. Biol. Cell 15:4949–4959.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch C., Eckert G. P., and Mueller W. E. (2002). Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides. Amyloid 9:149–159.

    PubMed  CAS  Google Scholar 

  • Koletzko B., Agostoni C., Carlson S. E., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., and Willatts P. (2001). Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr. 90:460–464.

    Article  PubMed  CAS  Google Scholar 

  • Kölsch H., Lütjohann D., Tulke A., Björkhem I., and Rao M. L. (1999). The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res. 818:171–175.

    Article  PubMed  Google Scholar 

  • Kondo M., Imahori Y., Mori S., and Nakajima K. (2002). Inositol phospholipid metabolism in Alzheimer’s disease - A positron emission tomographic study. In: DeLaTorre J. C., Kalaria R., Nakajima K., and Nagata K. (eds.), Alzheimer’s Disease: Vascular Etiology and Pathology. Annals of the New York Academy of Sciences New York Acad Sciences, New York, pp. 416–422.

    Google Scholar 

  • Lang P. A., Kempe D. S., Tanneur V., Eisele K., Klarl B. A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S. M., Lang F., and Wieder T. (2005). Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243.

    Article  PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. H., Williams M. V., and Blair I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77:141–157.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C., Ou M. C., Shinozaki K., Malone B., and Snyder F. (1996). Biosynthesis of N-acetylsphingosine by platelet-activating factor: Sphingosine CoA-independent transacetylase in HL-60 cels. J. Biol. Chem. 271:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Lizard G., Miguet C., Bessède G., Monier S., Gueldry S., Neel D., and Gambert P. (2000). Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28:743–753.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y., Hong S., Gotlinger K., and Serhan C. N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. ScientificWorldJournal 6:589–614.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Masters C. L., Cappai R., Barnham K. J., and Villemagne V. L. (2006). Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. J. Neurochem. 97:1700–1725.

    Article  PubMed  CAS  Google Scholar 

  • Milne S., Ivanova P., Forrester J., and Brown H. A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92–103.

    Article  PubMed  CAS  Google Scholar 

  • Nelson T. J. and Alkon D. L. (2005). Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem. 280:7377–7387.

    Article  PubMed  CAS  Google Scholar 

  • Nodai A., Machida T., Izumi S., Hamaya Y., Kohno T., Igarashi Y., Iizuka K., Minami M., and Hirafuji M. (2007). Sphingosine 1-phosphate induces cyclooxygeriase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80:1768–1776.

    Article  PubMed  CAS  Google Scholar 

  • Nomikos T. N., Iatrou C., and Demopoulos C. A. (2003). Acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity in cortical and medullary human renal tissue. Eur. J. Biochem. 270:2992–3000.

    Article  PubMed  CAS  Google Scholar 

  • Park D. S., Obeidat A., Giovanni A., and Greene L. A. (2000). Cell cycle regulators in neuronal death evoked by excitotoxic stress: Implications for neurodegeneration and its treatment. Neurobiol. Aging 21:771–781.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D. (2005). The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat. 77:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16:243–261.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.

    Article  PubMed  CAS  Google Scholar 

  • Reiss A. B., Siller K. A., Rahman M. M., Chan E. S. L., Ghiso J., and De Leon M. J. (2004). Cholesterol in neurologic disorders of the elderly: Stroke and Alzheimer’s disease. Neurobiol. Aging 25:977–989.

    Article  PubMed  CAS  Google Scholar 

  • Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77:4–14.

    Article  PubMed  CAS  Google Scholar 

  • Shindou H., Hishikawa D., Nakanishiu H., Harayama T., Ishii S., Taguchi R., and Shimizu T. (2007). A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells–Cloning and characterization of acetyl-CoA:lyso-PAF acetyltransferase. J. Biol. Chem. 282:6532–6539.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Ikonen E. (2000). How cells handle cholesterol. Science 290:1721–1726.

    Article  PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Stahelin R. V., Subramanian P., Vora M., Cho W., and Chalfant C. E. (2007). Ceramide-1-phosphate binds group IVA cytosolic phospholipase a2 via a novel site in the C2 domain. J. Biol. Chem. 282:20467–20474.

    Article  PubMed  CAS  Google Scholar 

  • Thakker D. R., Hoyer D., and Cryan J. F. (2006). Interfering with the brain: Use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol. Ther. 109:413–438.

    Article  PubMed  CAS  Google Scholar 

  • Thomas D. M., Francescutti-Verbeem D. M., and Kuhn D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J. 20:515–517.

    PubMed  CAS  Google Scholar 

  • Vaena de Avalos S., Jones J. A., and Hannun Y. A. (2004). Ceramides. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 135–167.

    Google Scholar 

  • Van Overloop H., Denizot Y., Baes M., and Van Veldhoven P. P. (2007). On the presence of C2-ceramide in mammalian tissues: possible relationship to ether phospholipids and phosphorylation by ceramide kinase. Biol. Chem. 388:315–324.

    Article  PubMed  CAS  Google Scholar 

  • Vigh L., Escriba P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horvath I., and Harwood J. L. (2005). The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 44:303–344.

    Article  PubMed  CAS  Google Scholar 

  • Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J. Lipid Res. 44: 441–449.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Akiguchi, I., Yagi, H., Onishi, K., Kawasaki, T., Shiino, A., and Inubushi, T. (2002) Proton magnetic resonance spectroscopy and white matter hyperintensities on magnetic resonance imaging in patients with Alzheimer’s disease. Ann. N. Y. Acad. Sci. 977:423–429.

    Article  PubMed  CAS  Google Scholar 

  • Wenk M. R. (2005). The emerging field of lipidomics. Nat. Rev. Drug Discov. 4:594–610.

    Article  PubMed  CAS  Google Scholar 

  • Xia X. G., Zhou H., and Xu Z. (2005). Promises and challenges in developing RNAi as a research tool and therapy for neurodegenerative diseases. Neurodegener. Dis. 2:220–231.

    Article  PubMed  CAS  Google Scholar 

  • Yamaji-Hasegawa A. and Tsujimoto M. (2006). Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29:1547–1553.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa K. (2002). Cholesterol and pathological processes in Alzheimer’s disease. J. Neurosci. Res. 70:361–366.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J. (1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.

    Article  PubMed  CAS  Google Scholar 

  • Yu Z. F., Nikolova-Karakashian M., Zhou D. H., Cheng G. J., Schuchman E. H., and Mattson M. P. (2000). Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15:85–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Perspective and Directions for Future Developments on Ether Lipids. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_12

Download citation

Publish with us

Policies and ethics