Skip to main content

Role of Anthocyanins in Plant Defence

Abstract

In addition to their well-documented beneficial effects on plant physiological processes, anthocyanins have also been proposed to function in a diverse array of plant/animal interactions. These include the attraction of pollinators and frugivores, as well as the repellence of herbivores and parasites. The optical properties of anthocyanins may serve as visual signals to potential herbivores, indicating a strong metabolic investment in toxic or unpalatable chemicals. Anthocyanins have also been implicated in the camouflage of plant parts against their backgrounds, in the undermining of insect crypsis, and in the mimicry of defensive structures. These hypotheses have in recent years attracted strong theoretical support and increasing experimental evidence. We emphasize that both the defensive and the physiological functions of anthocyanins may operate in plants simultaneously.

Keywords

  • Defensive Role
  • Autumn Leaf
  • Agave Species
  • Batesian Mimicry
  • Understory Herb

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77335-3_2
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-77335-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3

References

  • Allen, J.A. and Knill, R. (1991) Do grazers leave mottled leaves in the shade? Trends Ecol. Evol. 6, 109–110.

    Google Scholar 

  • Andersen, Ø.M. and Jordheim, M. (2006) The anthocyanins. In: Anderson, Ø.M. and Markham, K.R. (Eds.), Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Boca Raton, pp. 471–553.

    Google Scholar 

  • Archetti, M. (2000) The origin of autumn colours by coevolution. J. Theor. Biol. 205, 625–630.

    PubMed  CAS  Google Scholar 

  • Archetti, M. (2007a) Autumn colours and the nutritional translocation hypothesis: a theoretical assessment. J. Theor. Biol. 244, 714–721.

    CAS  Google Scholar 

  • Archetti, M. (2007b) Colour preference as evidence for the theories on the evolution of autumn colours. J. Theor. Biol. 245, 595–596.

    Google Scholar 

  • Archetti, M. and Brown, S.P. (2004) The coevolution theory of autumn colours. Proc. Roy. Soc. Lond., Ser. B: Biol. Sci. 271, 1219–1223.

    Google Scholar 

  • Archetti, M. and Leather, S.R. (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos 110, 339–343.

    Google Scholar 

  • Arikawa, K., Inokuma, K. and Eguchi, E. (1987) Pentachromatic visual system in a butterfly. Naturwiss. 74, 297–298.

    Google Scholar 

  • Armbruster, W.S. (2002) Can indirect selection and genetic context contribute to trait diversification? A transition probability study of blossom-colour evolution in two genera. J. Evol. Biol. 15, 468–486.

    Google Scholar 

  • Augner, M. and Bernays, E.A. (1998) Plant defence signals and Batesian mimicry. Evol. Ecol. 12, 667–679.

    Google Scholar 

  • Ayasse, M., Schiestl, F.P., Paulus, H.F., Löfstedt, C., Hansson, B., Ibarra F. and Francke, W. (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? Evolution 54, 1995–2006.

    PubMed  CAS  Google Scholar 

  • Bennett, R.N. and Wallsgrove, R.M. (1994) Secondary metabolites in plant defence mechanisms. New Phytol. 127, 617–633.

    CAS  Google Scholar 

  • Bowers, D.M. (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp, N.E. and Casey, T.M. (Eds.), Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman and Hall, NewYork, pp. 331–371.

    Google Scholar 

  • Briscoe, A. and Chittka, L. (2001) Evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510.

    PubMed  CAS  Google Scholar 

  • Bristow, C.M. (1991) Why are so few aphids ant attended? In: Huxley, C.R. and Cutler, D.F. (Eds.), Ant-Plant Interactions. Oxford University Press, Oxford, pp. 104–119.

    Google Scholar 

  • Brown, S.P. (2005) A view from Mars. In: Ridley, M. (Ed.), Narrow Roads of Gene Land – The Collected Papers of W. D. Hamilton. Volume 3: Last Words. Oxford University Press, Oxford, pp. 350–356

    Google Scholar 

  • Cahn, M.G. and Harper, J.L. (1976) The biology of leaf mark polymorphism in Trifolium repens L. 2. Evidence for the selection of leaf marks by rumen fistulated sheep. Heredity 37, 327–333.

    Google Scholar 

  • Chalker-Scott, L. (1999) Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9.

    CAS  Google Scholar 

  • Close, D.C. and Beadle, C.L. (2003) The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149–161.

    Google Scholar 

  • Cole, D.T. (1970) Lithops in habitat. In: Sprechman, D.L. (Ed.), Lithops. Fairleigh Dickinson University Press, Cranbury, pp. 21–32.

    Google Scholar 

  • Cole, D.T. and Cole, N.A. (2005) Lithops - Flowering Stones. Cactus and Co., Pessano.

    Google Scholar 

  • Coley, P.D. and Aide, T.M. (1989) Red coloration of tropical young leaves: a possible antifungal defence? J. Trop. Ecol. 5, 293–300.

    Google Scholar 

  • Coley, P.D. and Barone, J.A. (1996) Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335.

    Google Scholar 

  • Cook, A.D., Atsatt, P.R. and Simon, C.A. (1971) Doves and dove weed: multiple defenses against avian predation. BioScience 21, 277–281.

    Google Scholar 

  • Costa-Arbulú, C., Gianoli, E., Gonzáles, W.L. and Niemeyer, H.M. (2001) Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense? J. Chem. Ecol. 27, 273–283.

    PubMed  Google Scholar 

  • Cott, H.B. (1940) Adaptive Coloration in Animals. Methuen and Co., London.

    Google Scholar 

  • Crawley, M.J. (1983) Herbivory. The Dynamics of Animal-Plant Interactions. University of California Press, Berkeley.

    Google Scholar 

  • Dafni, A. (1984) Mimicry and deception in pollination. Annu. Rev. Ecol. Syst. 15, 259–278.

    Google Scholar 

  • Dafni, A., Lehrer, M. and Kevan, P.G. (1997) Spatial flower parameters and insect spatial vision. Biol. Rev. 72, 239–282.

    Google Scholar 

  • Davies, K.M. (2004) Important rare plant pigments. In: Davies, K.M. (Ed.), Plant Pigments and their Manipulation. Annual Plant Reviews, Volume 14. Blackwell Publishing, Oxford, pp. 214–247.

    Google Scholar 

  • Dixon, A.F.G. (1998) Aphid Ecology. An Optimization Approach. Chapman and Hall, London, UK.

    Google Scholar 

  • Dominy, N.D., Lucas, P.W., Ramsden, W., Riba-Hernandez, P., Stoner, K.E. and Turner, I.M. (2002) Why are young leaves red? Oikos 98, 163–176.

    Google Scholar 

  • Döring, T.F. and Chittka, L. (2007) Visual ecology of aphids – a critical review on the role of colours in host finding. Arthropod Plant Interact. 1, 3–16.

    Google Scholar 

  • Edmunds, M. (1974) Defence in Animals. A Survey of Anti-Predator Defences. Longman Press, New York.

    Google Scholar 

  • Edmunds, M. (2000) Why are there good and poor mimics? Biol. J. Linn. Soc. 70, 459–466.

    Google Scholar 

  • Eisner, T. and Grant, R.P. (1981) Toxicity, odor aversion, and ‘‘olfactory aposematism’’. Science 213, 476.

    PubMed  CAS  Google Scholar 

  • Eisner, T., Eisner, M. and Siegler, M. (2005). Secret Weapons. Defenses of Insects, Spiders, Scorpions, and Other Many-Legged Creatures. Harvard University Press, Cambridge.

    Google Scholar 

  • Endler, J.A. (1984) Progressive background matching in moths, and a quantitative measure of crypsis. Biol. J. Linn. Soc. 22, 187–231.

    Google Scholar 

  • Facelli, J.M. (1993) Experimental evaluation of the foliar flag hypothesis using fruits of Rhus glabra (L.). Oecologia 93, 70–72.

    Google Scholar 

  • Faegri, K. and van der Pijl, L. (1979) The Principles of Pollination Ecology, 3rd Edn. Pergamon Press, Oxford.

    Google Scholar 

  • Feild, T.S., Lee, D.W. and Holbrook, N.M. (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127, 566–574.

    PubMed  CAS  Google Scholar 

  • Finch, S. and Jones, T.H. (1989) An analysis of the deterrent effect of aphids on cabbage root fly (Delia radicum) egg-laying. Ecol. Entomol. 14, 387–391.

    Google Scholar 

  • Fineblum, W.L. and Rausher, M.D. (1997) Do floral pigmentation genes also influence resistance to enemies? The W locus in Ipomoea purpurea. Ecology 78, 1646–1654.

    Google Scholar 

  • Gittleman, J.L. and Harvey, P.H. (1980) Why are distasteful prey not cryptic? Nature 286, 149–150.

    Google Scholar 

  • Givnish, T.J. (1990) Leaf mottling: relation to growth form and leaf phenology and possible role as camouflage. Funct. Ecol. 4, 463–474.

    Google Scholar 

  • Gould, K.S. (1993) Leaf heteroblasty in Pseudopanax crassifolius: functional significance of leaf morphology and anatomy. Ann. Bot. 71, 61–70.

    Google Scholar 

  • Gould, K.S. (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314–320.

    PubMed  Google Scholar 

  • Gould, K.S., Neill, S.O. and Vogelmann, T.C. (2002) A unified explanation for anthocyanins in leaves? Adv. Bot. Res. 37, 167–192.

    CAS  Google Scholar 

  • Grafen, A. (1990) Biological signals as handicaps. J. Theor. Biol. 144, 517–546.

    PubMed  CAS  Google Scholar 

  • Gronquist, M., Bezzerides, A., Attygalle, A., Meinwald, J., Eisner, M. and Eisner, T. (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc. Natl. Acad. Sci. USA 98, 13745–13750.

    PubMed  CAS  Google Scholar 

  • Grubb, P.J. (1992) A positive distrust in simplicity – lessons from plant defences and from competition among plants and among animals. J. Ecol. 80, 585–610.

    Google Scholar 

  • Guthrie, R.D. and Petocz, R.G. (1970) Weapon automimicry among animals. Am. Nat. 104, 585–588.

    Google Scholar 

  • Hagen, S.B., Folstad, I. and Jakobsen, S.W. (2003) Autumn colouration and herbivore resistance in mountain birch (Betula pubescens). Ecol. Lett. 6, 807–811.

    Google Scholar 

  • Hagen, S.B., Debeauss, S., Yoccoz, N.G. and Folstad, I. (2004) Autumn coloration as a signal of tree condition. Proc. Roy. Soc. Lond., Ser. B: Biol. Sci. 271 (Suppl.), S184-S185.

    Google Scholar 

  • Halpern, M., Raats, D. and Lev-Yadun, S. (2007) Plant biological warfare: thorns inject pathogenic bacteria into herbivores. Environ. Microbiol. 9, 584–592.

    PubMed  CAS  Google Scholar 

  • Hamilton, W.D. and Brown, S.P. (2001) Autumn tree colours as a handicap signal. Proc. Roy. Soc. Lond., Ser. B: Biol. Sci. 268, 1489–1493.

    CAS  Google Scholar 

  • Harborne, J.B. (1982) Introduction to Ecological Biochemistry. Academic Press, London.

    Google Scholar 

  • Harborne, J.B. (1997) Biochemical plant ecology. In: Dey, P.M. and Harborne, J.B. (Eds.), Plant Biochemistry. Academic Press, London, pp. 503–516.

    Google Scholar 

  • Harper, J.L. (1977) Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Harvey, P.H. and Paxton, R.J. (1981) The evolution of aposematic coloration. Oikos 37, 391–396.

    Google Scholar 

  • Hatier, J.-H. and Gould, K.S. (2007) Black coloration in leaves of Ophiopogon planiscapus ‘‘Nigrescens’’. Leaf optics, chromaticity, and internal light gradients. Funct. Plant Biol. 34, 130–138.

    Google Scholar 

  • Herrera, C.M., Medrano, M., Rey, P.J., Sánchez-Lafuente, A.M., Garcia, M.B., Guitián, J. and Manzaneda, A.J. (2002) Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism- and antagonism-related traits. Proc. Natl. Acad. Sci. USA 99, 16823–16828.

    PubMed  CAS  Google Scholar 

  • Hinton, H.E. (1973) Natural deception. In: Gregory, R.L. and Gombrich, E.H. (Eds.), Illusion in Nature and Art. Duckworth, London, pp. 97–159.

    Google Scholar 

  • Hoch, W.A., Zeldin, E.L. and McCown, B.H. (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 21, 1–8.

    PubMed  CAS  Google Scholar 

  • Hoch, W.A., Singsaas, E.L. and McCown, B.H. (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol. 133, 1296–1305.

    PubMed  CAS  Google Scholar 

  • Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234.

    PubMed  CAS  Google Scholar 

  • Holopainen, J.K. and Peltonen, P. (2002) Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99, 184–188.

    Google Scholar 

  • Huxley, C.R. and Cutler, D.F. (1991) Ant-Plant Interactions. Oxford University Press, Oxford.

    Google Scholar 

  • Ichiishi, S., Nagamitsu, T., Kondo, Y., Iwashina, T., Kondo, K. and Tagashira, N. (1999) Effects of macro-components and sucrose in the medium on in vitro red-color pigmentation in Dionaea muscipula Ellis and Drosera spathulata Laill. Plant Biotechnol. 16, 235–238.

    CAS  Google Scholar 

  • Inbar, M. and Lev-Yadun, S. (2005) Conspicuous and aposematic spines in the animal kingdom. Naturwiss. 92, 170–172.

    PubMed  CAS  Google Scholar 

  • Inbar, M., Doostdar, H. and Mayer, R.T. (1999) Effects of sessile whitefly nymphs (Homoptera: Aleyrodidae) on leaf-chewing larvae (Lepidoptera: Noctuidae). Environ. Entomol. 28, 353–357.

    Google Scholar 

  • Janzen, D.H. (1986) Chihuahuan desert nopaleras: defaunated big mammal vegetation. Annu. Rev. Ecol. Syst. 17, 595–636.

    Google Scholar 

  • Janzen, D.H. and Martin, P.S. (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27.

    PubMed  CAS  Google Scholar 

  • Jolivet, P. (1998) Interrelationship Between Insects and Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Juniper, B.E. (1994) Flamboyant flushes: a reinterpretation of non-green flush colours in leaves. Int. Dendrol. Soc. Yrbk. 1993, 49–57.

    Google Scholar 

  • Jürgens, A. (2004) Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem. Syst. Ecol. 32, 841–859.

    Google Scholar 

  • Jürgens, A., Witt, T. and Gottsberger, G. (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem. Syst. Ecol. 30, 383–397.

    Google Scholar 

  • Jürgens, A., Witt, T. and Gottsberger, G. (2003) Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem. Syst. Ecol. 31, 345–357.

    Google Scholar 

  • Karageorgou, P. and Manetas, Y. (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol. 26, 613–621.

    PubMed  CAS  Google Scholar 

  • Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago.

    Google Scholar 

  • Kelber, A. (2001) Receptor based models for spontaneous colour choices in flies and butterflies. Entomol. Exp. et Applic. 99, 231–244.

    Google Scholar 

  • Kelber, A., Vorobyev, M. and Osorio, D. (2003) Animal colour vision – behavioural tests and physiological concepts. Biol. Rev. 78, 81–118.

    PubMed  Google Scholar 

  • Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291, 2141–2144.

    PubMed  CAS  Google Scholar 

  • Kettlewell, B. (1973) The Evolution of Melanism. Clarendon Press, Oxford.

    Google Scholar 

  • Kirchner, S.M., Döring, T.F. and Saucke, H. (2005) Evidence for trichromacy in the green peach aphid Myzus persicae (Homoptera: Aphididae). J. Insect Physiol. 51, 1255–1260.

    PubMed  CAS  Google Scholar 

  • Knight, R.S. and Siegfried, W.R. (1983) Inter-relationships between type, size and color of fruits and dispersal in Southern African trees. Oecologia 56, 405–412.

    Google Scholar 

  • Komárek, S. (1998) Mimicry, Aposematism and Related Phenomena in Animals and Plants: Bibliography 1800–1990. Vesmir, Prague.

    Google Scholar 

  • Konczak, I. and Zhang, W. (2004) Anthocyanins – more than nature’s colours. J. Biomed. Biotechnol. 2004, 239–240.

    PubMed  Google Scholar 

  • Lanner, R.M. (1998) Seed dispersal in Pinus. In: Richardson, D.M. (Ed.), Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp. 281–295.

    Google Scholar 

  • Launchbaugh, K.L. and Provenza, F.D. (1993) Can plants practice mimicry to avoid grazing by mammalian herbivores? Oikos 66, 501–504.

    Google Scholar 

  • Lee, D.W. (2002) Anthocyanins in autumn leaf senescence. Adv. Bot. Res. 37, 147–165.

    CAS  Google Scholar 

  • Lee, D.W. and Gould, K.S. (2002a) Why leaves turn red. Am. Sci. 90, 524–531.

    Google Scholar 

  • Lee, D.W. and Gould, K.S. (2002b) Anthocyanins in leaves and other vegetative organs: an introduction. Adv. Bot. Res. 37, 2–16.

    Google Scholar 

  • Lee, D.W. and Lowry, J.B. (1980) Young-leaf anthocyanin and solar ultraviolet. Biotropica 12, 75–76.

    Google Scholar 

  • Lee, D.W., Brammeier, S. and Smith, A.P. (1987) The selective advantages of anthocyanins in developing leaves of mango and cacao. Biotropica 19, 40–49.

    Google Scholar 

  • Lee, D.W., O‘Keefe, J., Holbrook, N.M. and Feild, T.S. (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol. Res. 18, 677–694.

    CAS  Google Scholar 

  • Lev-Yadun, S. (2001) Aposematic (warning) coloration associated with thorns in higher plants. J. Theor. Biol. 210, 385–388.

    PubMed  CAS  Google Scholar 

  • Lev-Yadun, S. (2003a) Why do some thorny plants resemble green zebras? J. Theor. Biol. 244, 483–489.

    Google Scholar 

  • Lev-Yadun, S. (2003b) Weapon (thorn) automimicry and mimicry of aposematic colorful thorns in plants. J. Theor. Biol. 244, 183–188.

    Google Scholar 

  • Lev-Yadun, S. (2006) Defensive coloration in plants: a review of current ideas about anti-herbivore coloration strategies. In: Teixeira da Silva, J.A. (Ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Volume IV. Global Science Books, London, pp. 292–299.

    Google Scholar 

  • Lev-Yadun, S. and Inbar, M. (2002) Defensive ant, aphid and caterpillar mimicry in plants. Biol. J. Linn. Soc. 77, 393–398.

    Google Scholar 

  • Lev-Yadun, S. and Gould, K.S. 2007. What do red and yellow autumn leaves signal? Bot. Rev. 73, 279–289.

    Google Scholar 

  • Lev-Yadun, S. and Neéman, G. (2004) When may green plants be aposematic? Biol. J. Linn. Soc. 81, 413–416.

    Google Scholar 

  • Lev-Yadun, S., Dafni, A., Inbar, M., Izhaki, I. and Neéman, G. (2002) Colour patterns in vegetative parts of plants deserve more research attention. Trends Plant Sci. 7, 59–60.

    PubMed  CAS  Google Scholar 

  • Lev-Yadun, S., Dafni, A., Flaishman, M.A., Inbar, M., Izhaki, I., Katzir, G. and Neéman, G. (2004) Plant coloration undermines herbivorous insect camouflage. BioEssays 26, 1126–1130.

    PubMed  Google Scholar 

  • Lüttge, U. (1997) Physiological Ecology of Tropical Plants. Springer-Verlag, Berlin.

    Google Scholar 

  • Madden, D. and Young, Y.P. (1992) Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91, 235–238.

    Google Scholar 

  • Majerus, M.E.N. (1998) Melanism. Evolution in Action. Oxford University Press, Oxford.

    Google Scholar 

  • Manetas, Y. (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201, 163–177.

    Google Scholar 

  • Matile, P. (2000) Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35, 145–158.

    PubMed  CAS  Google Scholar 

  • Mendez, M., Gwynn-Jones, D. and Manetas, Y. (1999) Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytol. 144, 275–282.

    CAS  Google Scholar 

  • Merilaita, S. (2003) Visual background complexity facilitates the evolution of camouflage. Evolution 57, 1248–1254.

    PubMed  Google Scholar 

  • Merilaita, S., Tuomi, J. and Jormalainen, V. (1999) Optimization of cryptic coloration in heterogeneous habitat. Biol. J. Linn. Soc. 67, 151–161.

    Google Scholar 

  • Moran, J.A. and Moran, A.J. (1998) Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher plants (Nepenthes rafflesiana). Int. J. Plant Sci. 159, 996–1001.

    Google Scholar 

  • Myers, J.H. and Bazely, D. (1991). Thorns, spines, prickles, and hairs: are they stimulated by herbivory and do they deter herbivores? In: Tallamy, D.W. and Raupp, M.J. (Eds.), Phytochemical Induction by Herbivores. John Wiley and Sons, New York, pp. 325–344.

    Google Scholar 

  • Neill, S.O. and Gould, K.S. (1999) Optical properties of leaves in relation to anthocyanin concentration and distribution. Can. J. Bot. 77, 1777–1782.

    Google Scholar 

  • Nottingham, S.F., Hardie J. and Tatchell, G.M. (1991) Flight behaviour of the bird cherry aphid, Rhopalosiphum padi. Physiol. Entomol. 16, 223–229.

    Google Scholar 

  • Ohgushi, T. (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Syst. 36, 81–105.

    Google Scholar 

  • Ougham, H.J., Morris, P. and Thomas, H. (2005) The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Top. Dev. Biol. 66, 135–160.

    PubMed  CAS  Google Scholar 

  • Padmavati, M., Sakthivel, N., Thara, K.V. and Reddy, A.R. (1997) Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46, 499–502.

    CAS  Google Scholar 

  • Pasteur, G. (1982) A classification review of mimicry systems. Annu. Rev. Ecol. Syst. 13, 169–199.

    Google Scholar 

  • Pichersky, E. and Gershenzon, J. (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237–243.

    PubMed  CAS  Google Scholar 

  • Pichersky, E. and Dudareva, N. (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotech. 25, 105–110.

    CAS  Google Scholar 

  • Provenza, F.D., Kimball, B.A. and Villalba, J.J. (2000) Roles of odor, taste, and toxicity in the food preferences of lambs: implications for mimicry in plants. Oikos 88, 424–432.

    Google Scholar 

  • Purser, B. (2003) Jungle Bugs: Masters of Camouflage and Mimicry. Firefly Books. Toronto.

    Google Scholar 

  • Rebollo, S., Milchunas, D.G., Noy-Meir, I. and Chapman, P.L. (2002) The role of spiny plant refuge in structuring grazed shortgrass steppe plant communities. Oikos 98, 53–64.

    Google Scholar 

  • Reichelt, G. and Wilmanns, O. (1973) Vegetationsgeographie. Das Geographisce Seminar. Westermann, Braunschweig.

    Google Scholar 

  • Richards, P.W. (1996) The Tropical Rain Forest: An Ecological Study, 2nd Edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ridley, H.N. (1930) The Dispersal of Plants Throughout the World. L. Reeve and Co., Ashford.

    Google Scholar 

  • Rolshausen, G. and Schaefer, H.M. (2007) Do aphids paint the tree red (or yellow) – can herbivore resistance or photoprotection explain colourful leaves in autumn? Plant Ecol. 191, 77–84.

    Google Scholar 

  • Rothschild, M. (1980) Remarks on carotenoids in the evolution of signals. In: Gilbert, L.E. and Raven, P.H. (Eds.), Coevolution of Animals and Plants. University of Texas Press, Austin, pp. 20–51.

    Google Scholar 

  • Rubino, D.L. and McCarthy, B.C. (2004) Presence of aposematic (warning) coloration in vascular plants of southeastern Ohio. J. Torrey Bot. Soc. 131, 252–256.

    Google Scholar 

  • Ruxton, G.D., Sherratt, T.N. and Speed, M.P. (2004) Avoiding Attack. The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford.

    Google Scholar 

  • Saracino, A., Pacella, R., Leone, V. and Borghetti, M. (1997) Seed dispersal and changing seed characteristics in a Pinus halepensis Mill. forest after fire. Plant Ecol. 130, 13–19.

    Google Scholar 

  • Saracino, A., D’Alessandro, C.M. and Borghetti, M. (2004) Seed colour and post-fire bird predation in a Mediterranean pine forest. Acta Oecol. 26, 191–196.

    Google Scholar 

  • Schaefer, H.M. and Rolshausen, G. (2006) Plants on red alert: do insects pay attention? BioEssays 28, 65–71.

    PubMed  Google Scholar 

  • Schaefer, H.M. and Rolshausen, G. (2007) Aphids do not attend to leaf colour as visual signal, but to the handicap of reproductive investment. Biol. Lett. 3, 1–4.

    PubMed  Google Scholar 

  • Schaefer, H.M. and Wilkinson, D.M. (2004) Red leaves, insects and coevolution: a red herring? Trends Ecol. Evol. 19, 616–618.

    PubMed  Google Scholar 

  • Schaefer, H.M., Schaefer, V. and Levey, D.J. (2004) How plant-animal interactions signal new insights in communication. Trends Ecol. Evol. 19, 577–584.

    Google Scholar 

  • Schaefer, H.M., Levey, D.J., Schaefer, V. and Avery, M.L. (2006) The role of chromatic and achromatic signals for fruit detection by birds. Behav. Ecol. 17, 784–789.

    Google Scholar 

  • Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F. and Francke, W. (2000) Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol., A 186, 567–574.

    CAS  Google Scholar 

  • Schulze, E.-D., Beck, E. and Müller-Hohenstein, K. (2002) Plant Ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Schwinn, K.E. and Davies, K.M. (2004) Flavonoids. In: Davies, K.M. (Ed.), Plant Pigments and their Manipulation. Annual Plant Reviews, Volume 14. Blackwell Publishing, Oxford, pp. 92–149.

    Google Scholar 

  • Shimohigashi, M. and Tominaga, Y. (1991) Identification of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae. Cell Tiss. Res. 263, 49–59.

    Google Scholar 

  • Sillén-Tullberg, B. and Bryant, E.H. (1983) The evolution of aposematic coloration in distasteful prey: an individual selection model. Evolution 37, 993–1000.

    Google Scholar 

  • Sinkkonen, A. (2006a) Sexual reproduction advances autumn leaf colours in mountain birch (Betula pubescens ssp. czerepanovii). J. Evol. Biol. 19, 1722–1724.

    CAS  Google Scholar 

  • Sinkkonen, A. (2006b) Do autumn leaf colours serve as a reproductive insurance against sucking herbivores? Oikos 113, 557–562.

    Google Scholar 

  • Smith, A.P. (1986) Ecology of leaf color polymorphism in a tropical forest species: habitat segregation and herbivory. Oecologia 69, 283–287.

    Google Scholar 

  • Speed, M.P. and Ruxton, G.D. (2005) Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution 59, 2499–2508.

    PubMed  Google Scholar 

  • Stafford, H.A. (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci. 101, 91–98.

    CAS  Google Scholar 

  • Stiles, E.W. (1982) Fruit flags: two hypotheses. Am. Nat. 120, 500–509.

    Google Scholar 

  • Stone, B.C. (1979) Protective coloration of young leaves in certain Malaysian palms. Biotropica 11, 126.

    Google Scholar 

  • Tuomi, J. and Augner, M. (1993) Synergistic selection of unpalatability in plants. Evolution 47, 668–672.

    Google Scholar 

  • Weiss, M.R. (1995) Floral colour change: a widespread functional convergence. Am. J. Bot. 82, 167–195.

    Google Scholar 

  • Werlein, H.-D., Kutemeyer, C., Schatton, G., Hubbermann, E.M. and Schwarz, K. (2005) Influence of elderberry and blackcurrant concentrates on the growth of microorganisms. Food Control 16, 729–733.

    Google Scholar 

  • Wickler, W. (1968) Mimicry in Plants and Animals. Weidenfeld and Nicolson, London.

    Google Scholar 

  • Wiens, D. (1978) Mimicry in plants. Evol. Biol. 11, 365–403.

    Google Scholar 

  • Wiklund, C. and Jörvi T. (1982) Survival of distasteful insects after being attacked by naive birds: a reappraisal of the theory of aposematic coloration evolving through individual selection. Evolution 36, 998–1002.

    Google Scholar 

  • Wilkinson, D.M., Sherratt, T.N., Phillip, D.M., Wratten, S.D., Dixon, A.F.G. and Young, A.J. (2002) The adaptive significance of autumn leaf colours. Oikos 99, 402–407.

    Google Scholar 

  • Williamson, G.B. (1982) Plant mimicry: evolutionary constraints. Biol. J. Linn. Soc. 18, 49–58.

    Google Scholar 

  • Willson, M.F. and Hoppes, W.G. (1986) Foliar ‘‘flags’’ for avian frugivores: signal or serendipity? In: Estrada, A. and Fleming, T.H. (Eds.), Frugivores and Seed Dispersal. Springer, Dordrecht, pp. 55–69.

    Google Scholar 

  • Willson, M.F. and Whelan, C.J. (1990) The evolution of fruit color in fleshy-fruited plants. Am. Nat. 136, 790–809.

    Google Scholar 

  • Wimp, G.M. and Whitham, T.G. (2001) Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82, 440–452.

    Google Scholar 

  • Wrolstad, R.E. (2004). Symposium 12: Interaction of natural colors with other ingredients. Anthocyanin pigments - Bioactivity and coloring properties. J. Food Sci. 69, C419-C421.

    CAS  Google Scholar 

  • Yamasaki, H. (1997) A function of colour. Trends Plant Sci. 2, 7–8.

    Google Scholar 

  • Zahavi, A. (1975) Mate selection - a selection for a handicap. J. Theor. Biol. 53, 205–214.

    PubMed  CAS  Google Scholar 

  • Zahavi, A. (1977) The cost of honesty (further remarks on the handicap principle). J. Theor. Biol. 67, 603–605.

    PubMed  CAS  Google Scholar 

  • Zahavi, A. (1987) The theory of signal selection and some of its implications. In: Delfino, V.P. (Ed.), International Symposium of Biological Evolution. Adriatica Editrica, Bari, pp. 305–327.

    Google Scholar 

  • Zahavi, A. and Zahavi, A. (1997) The Handicap Principle: A Missing Piece of Darwin’s Puzzle. Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simcha Lev-Yadun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lev-Yadun, S., Gould, K.S. (2008). Role of Anthocyanins in Plant Defence. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_2

Download citation