Skip to main content

Adaptive Responses and Signal Transduction Pathways in Chemically Induced Mitochondrial Dysfunction and Cell Death

  • Chapter
  • First Online:
Advances in Bioactivation Research

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IX))

  • 632 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose, M., Ryan, A., O’Sullivan, G. C., Dunne, C., and Barry, O. P. 2006. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: Involvement of extracellular signal-regulated kinase 1/2, p38δ/γ, cyclo- oxygenase-2 down-regulation, and translocation of apoptosis-inducing factor. Mol. Pharmacol. 69:1879–1890.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, P. M., and Schultze, M. O. 1965. Cleavage of S-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch. Biochem. Biophys. 111:593–602.

    Article  PubMed  CAS  Google Scholar 

  • Aw, T. Y., and Jones, D. P. 1989. Nutrient supply and mitochondrial function. Annu. Rev. Nutr. 9:229–251.

    Article  PubMed  CAS  Google Scholar 

  • Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn II, G. W., Robbins, J., and Molkentin, J. D. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662.

    Article  PubMed  CAS  Google Scholar 

  • Banki, K., and Anders, M. W. 1989. Inhibition of rat kidney mitochondrial DNA, RNA and protein synthesis by halogenated cysteine S-conjugates. Carcinogenesis 10:767–772.

    Article  PubMed  CAS  Google Scholar 

  • Barone, M. C., Darley-Usmar, V. M., and Brookes, P. S. 2003. Reversible inhibition of cytochrome c oxidase by peroxynitrite proceeds through ascorbate-dependent generation of nitric oxide. J. Biol. Chem. 278:27520–27524.

    Article  PubMed  CAS  Google Scholar 

  • Bellamy, T. C., Griffiths, C., and Garthwaite, J. 2002. Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J. Biol. Chem. 277:31801–31807.

    Article  PubMed  CAS  Google Scholar 

  • Beltrán, B., Quintero, M., Garcia-Zaragozá. E., O'Connor, E., Esplugues, J. V., and Moncada, S. 2002. Inhibition of mitochondrial respiration by endogenous nitric oxide: A critical step in Fas signaling. Proc. Natl. Acad. Sci. U.S.A. 99:8892–8897.

    Google Scholar 

  • Bhattacharya, R. K., and Schultze, M. O. 1967. Enzymes from bovine and turkey kidneys which cleave S-(1,2-dichlorovinyl)-L-cysteine. Comp. Biochem. Physiol. 22:723–735.

    Article  PubMed  CAS  Google Scholar 

  • Borutaite, V., Budriunaite, A., and Brown, G. C. 2000. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim. Biophys. Acta 1459:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Brookes, P. S., Kraus, D. W., Shiva, S., Doeller, J. E., Barone, M. C., Patel, R. P., Lancaster, Jr., J. R., and Darley-Usmar, V. 2003. Control of mitochondrial respiration by NO, effects of low oxygen and respiratory state. J. Biol. Chem. 278:31603–31609.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. C., Sokolove, P. M., McCann, D. J., Stevens, J. L., and Jones, T. W. 1996. Induction of a permeability transition in rat kidney mitochondria by pentachlorobutadienyl cysteine: A β-lyase-independent process. Arch. Biochem. Biophys. 331:223–231.

    Article  Google Scholar 

  • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  • Bruschi, S. A., Lindsay, J. G., and Crabb, J. W. 1998. Mitochondrial stress protein recognition of inactivated dehydrogenases during mammalian cell death. Proc. Natl. Acad. Sci. U.S.A. 95:13413–13418.

    Google Scholar 

  • Bruschi, S. A., West, K. A., Crabb, J. W., Gupta, R. S., and Stevens, J. L. 1993. Mitochondrial HSP60 (P1 protein) and a HSP70-like protein (mortalin) are major targets for modification during S-(1,1,2,2-tetrafluoroethyl)-L-cysteine-induced nephrotoxicity. J. Biol. Chem. 268:23157–23161.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., and Davies, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Rad. Biol. Med. 29:222–230.

    Article  PubMed  CAS  Google Scholar 

  • Cai, J., and Jones, D. P. 1998. Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273:11401–11404.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Jones, T. W., and Stevens, J. L. 1994. Early cellular events couple covalent binding of reactive metabolites to cell killing by nephrotoxic cysteine conjugates. J. Cell. Physiol. 161:293–302.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., and Lash, L. H. 1998. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J. Pharmacol. Exp. Ther. 285:608–618.

    PubMed  CAS  Google Scholar 

  • Chen, Z., Putt, D. A., and Lash, L. H. 2000. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: Further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch. Biochem. Biophys. 373:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Yu, K., Holbrook, N. J., and Stevens, J. L. 1992. Activation of the growth arrest and DNA damage-inducible gene gadd 153 by nephrotoxic cysteine conjugates and dithiothreitol. J. Biol. Chem. 267:8207–8212.

    PubMed  CAS  Google Scholar 

  • Chiarugi, A. 2005. “Simple but not simpler”: Toward a unified picture of energy requirements in cell death. FASEB J. 19:1783–1788.

    Article  PubMed  CAS  Google Scholar 

  • Cogswell, P. C., Kashatus, D. F., Keifer, J. A., Guttridge, D. C., Reuther, J. Y., Bristow, C., Roy, S., Nicholson, D. W., and Baldwin Jr., A. S. 2003. NF-κB and IκBα are found in the mitochondria: Evidence for regulation of mitochondrial gene expression by NF-κB. J. Biol. Chem. 278:2963–2968.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., Bruschi, S. A., and Anders, M. W. 2002. Toxic, halogenated cysteine S-conjugates and targeting of mitochondrial enzymes of energy metabolism. Biochem. Pharmacol. 64:553–564.

    Article  PubMed  CAS  Google Scholar 

  • Damdimopoulos, A. E., Miranda-Vizuete, A., Pelto-Huikko, M., Gustafsson, J.-A., and Spyrou, G. 2002. Human mitochondrial thioredoxin: Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem. 277:33249–33257.

    Article  PubMed  CAS  Google Scholar 

  • Danial, N. N., and Korsmeyer, S. J. 2004. Cell death: Critical control points. Cell 116:205–219.

    Article  PubMed  CAS  Google Scholar 

  • de Graauw, M., Tijdens, I., Cramer, R., Corless, S., Timms, J. F., and van de Water, B. 2005. Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J. Biol. Chem. 280:29885–29898.

    Article  PubMed  CAS  Google Scholar 

  • Di Mari, J. F., Davis, R., and Safirstein, R. L. 1999. MAPK activation determines renal epithelial cell survival during oxidative injury. Am. J. Physiol. 277:F195–F203.

    PubMed  Google Scholar 

  • Dmitrieva, N., Michea, L., and Burg, M. 2001. p53 Protects renal inner medullary cells from hypertonic stress by restricting DNA replication. Am. J. Physiol. 281:F522–F530.

    CAS  Google Scholar 

  • Epstein, F. H., Charney, A. N., and Silva, P. 1978. Factors influencing the increase in Na–K-ATPase in compensatory renal hypertrophy. Yale J. Biol. Med. 51:365–372.

    PubMed  CAS  Google Scholar 

  • Fine, L. 1986. The biology of renal hypertrophy. Kidney Int. 29:619–634.

    Article  PubMed  CAS  Google Scholar 

  • Ghafourifar, P., Schenk, U., Klein, S. D., and Richter, C. 1999. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria: Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem. 274:31185–31188.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., May, M., and Kopp, E. 1998. NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., Pulinilkunnil, T., Yuen, G., Kewalramani, G., An, D., Qi, D., Abrahani, A., and Rodrigues, B. 2005. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am. J. Physiol. 289:H768–H776.

    Article  CAS  Google Scholar 

  • Giulivi, C., Poderoso, J. J., and Boveris, A. 1998. Production of nitric oxide by mitochondria. J. Biol. Chem. 273:11038–11043.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. R., and Kroemer, G. 2004. The pathophysiology of mitochondrial cell death. Science 305:626–629.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O. W., and Meister, A. 1985. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. U.S.A. 82:4668–4672.

    Google Scholar 

  • Guder, W. G., Wagner, S., and Wirthensohn, G. 1986. Metabolic fuels along the nephron: Pathways and intracellular mechanisms of interaction. Kidney Int. 29:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Hajnóczky, G., and Hoek, J. B. 2007. Mitochondrial longevity pathways. Science 315:607–609.

    Article  PubMed  Google Scholar 

  • Hansen, J. M., Zhang, H., and Jones, D. P. 2006. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-α-induced reactive oxygen species generation, NF-κB activation, and apoptosis. Toxicol. Sci. 91:643–650.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D. C. H., Chan, L., and Schrier, R. W. 1988. Remnant kidney hypermetabolism and progression of chronic renal failure. Am. J. Physiol. 254:F267–F276.

    PubMed  CAS  Google Scholar 

  • Hayden, P. J., and Stevens, J. L. 1990. Cysteine conjugate toxicity, metabolism, and binding to macromolecules in isolated rat kidney mitochondria. Mol. Pharmacol. 37:468–476.

    PubMed  CAS  Google Scholar 

  • Hayden, P. J., Ichimura, T., McCann, D. J., Pohl, L. R., and Stevens, J. L. 1991. Detection of cysteine conjugate metabolite adduct formation with specific mitochondrial proteins using antibodies raised against halothane metabolite adducts. J. Biol. Chem. 266:18415–18418.

    PubMed  CAS  Google Scholar 

  • Hayden, P. J., Welsh, C. J., Yang, Y., Schaefer, W. H., Ward, A. J. I., and Stevens, J. L. 1992. Formation of mitochondrial phospholipid adducts by nephrotoxic cysteine conjugate metabolites. Chem. Res. Toxicol. 5:231–237.

    Article  CAS  Google Scholar 

  • He, L., and Lemasters, J. J. 2003. Heat shock suppresses the permeability transition in rat liver mitochondria. J. Biol. Chem. 278:16755–16760.

    Article  PubMed  CAS  Google Scholar 

  • Healy, E., Dempsey, M., Lally, C., and Ryan, M. P. 1998. Apoptosis and necrosis: Mechanisms of cell death induced by cyclosporin A in a renal proximal tubular cell line. Kidney Int. 54:1955–1966.

    Article  PubMed  CAS  Google Scholar 

  • Ho, H. K., Jia, Y., Coe, K. J., Gao, Q., Doneanu, C. E., Hu, Z., Bammler, T. K., Beyer, R. P., Fausto, N., Bruschi, S. A., and Nelson, S. D. 2006. Cytosolic heat shock proteins and heme oxygenase-1 are preferentially induced in response to specific and localized intramitochondrial damage by tetrafluoroethylcysteine. Biochem. Pharmacol. 72:80–90.

    CAS  Google Scholar 

  • Humes, H. D., Cieslinski, D. A., Coimbra, T. M., Messana, J. M., and Galvao, C. 1989. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J. Clin. Invest. 84:1757–1761.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. P., Rodriguez, H. J., Hogan, W. C., and Klahr, S. 1980. Mechanism of activation of renal Na+–K+-ATPase in the rat: Effects of reduction of renal mass. Am. J. Physiol. 239:F281–F288.

    PubMed  CAS  Google Scholar 

  • James, E. A., Gygi, S. P., Adams, M. L., Pierce, R. H., Fausto, N., Aebersold, R. H., Nelson, S. D., and Bruschi, S. A. 2002. Mitochondrial aconitase modification, functional inhibition, and evidence for a supramolecular complex of the TCA cycle by the renal toxicant S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Biochemistry 41:6789–6797.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y., Akerboom, T. P., Sies, H., and Thomas, J. A. 1999. S-Nitrosylation and S-glutathionylation of protein sulfhydryls by S-nitrosoglutathione. Arch. Biochem. Biophys. 362:67–78.

    Article  CAS  Google Scholar 

  • Jones, D. P. 2006. Disruption of mitochondrial redox circuitry in oxidative stress. Chem. Biol. Interact. 163:38–53.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.- M., Kim, T.- H., Seol, D.- W., Talanian, R. V., and Billiar, T. R. 1998. Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J. Biol. Chem. 273:31437–31441.

    Article  PubMed  CAS  Google Scholar 

  • Klatt, P., Molina. E. P., and Lamas, S. 1999. Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J. Biol. Chem. 274:15857–15864.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G. 2003. Mitochondrial control of apoptosis: An introduction. Biochem. Biophys. Res. Commun. 304:433–435.

    Article  PubMed  CAS  Google Scholar 

  • Kröncke, K.- D., Klotz, L.- O., Suschek, C. V., and Sies, H. 2002. Comparing nitrosative versus oxidative stress towards zinc finger-dependent transcription factors: Unique role for NO. J. Biol. Chem. 277:13294–13301.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H. 1990. Susceptibility to toxic injury in different nephron cell populations. Toxicol. Lett. 53:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H. 2006. Mitochondrial glutathione transport: Physiological, pathological and toxicological implications. Chem. Biol. Interact. 163:54–67.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H., and Anders, M. W. 1986. Cytotoxicity of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine in isolated rat kidney cells. J. Biol. Chem. 261:13076–13081.

    PubMed  CAS  Google Scholar 

  • Lash, L. H., and Anders, M. W. 1987. Mechanism of S-(1,2-dichlorovinyl)-L-cysteine- and S-(1,2-dichlorovinyl)-L-homocysteine-induced renal mitochondrial toxicity. Mol. Pharmacol. 32:549–556.

    PubMed  CAS  Google Scholar 

  • Lash, L. H., and Zalups, R. K. 1994. Activities of enzymes involved in renal cellular glutathione metabolism after uninephrectomy in the rat. Arch. Biochem. Biophys. 209:129–138.

    Article  Google Scholar 

  • Lash, L. H., Fisher, J. W., Lipscomb, J. C., and Parker, J. C. 2000. Metabolism of trichloroethylene. Environ. Health Perspect. 108(Suppl. 2):177–200.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H., Hueni, S. E., Putt, D. A., and Zalups, R. K. 2005b. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: Influence of compensatory renal growth. Toxicol. Sci. 88:630–644.

    Article  CAS  Google Scholar 

  • Lash, L. H., Parker, J. C., and Scott, C. S. 2000. Modes of action of trichloroethylene for kidney tumorigenesis. Environ. Health Perspect. 108(Suppl. 2):225–240.

    Article  CAS  Google Scholar 

  • Lash, L. H., Putt, D. A., Horky III, S. J., and Zalups, R. K. 2001. Functional and toxicological characteristics of isolated renal mitochondria: Impact of compensatory renal growth. Biochem. Pharmacol. 62:383–395.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H., Putt, D. A., Hueni, S. E., and Horwitz, B. P. 2005a. Molecular markers of trichloroethylene-induced toxicity in human kidney cells. Toxicol. Appl. Pharmacol. 206:157–168.

    Article  CAS  Google Scholar 

  • Lash, L. H., Putt, D. A., Hueni, S. E., Krause, R. J., and Elfarra, A. A. 2003. Roles of necrosis, apoptosis, and mitochondrial dysfunction in S-(1,2-dichlorovinyl)-L-cysteine sulfoxide-induced cytotoxicity in primary cultures of human renal proximal tubular cells. J. Pharmacol. Exp. Ther. 305:1163–1172.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H., Putt, D. A., and Matherly, L. H. 2002. Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical induced apoptosis by overexpression of a mitochondrial glutathione transporter. J. Pharmacol. Exp. Ther. 303:476–486.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.- J., Cho, H.- N., Jeoung, D.- I., Soh, J.- W., Cho., C. K., Bae, S., Chung, H.- Y., Lee, S.-J., and Lee, Y.-S. 2004. HSP25 overexpression attenuates oxidative stress-induced apoptosis: Roles of ERK1/2 signaling and manganese superoxide dismutase. Free Rad. Biol. Med. 36:429–444.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.- J., Lee, D.- H., Cho, C.- K., Bae, S., Jhon, G.- J., Lee, S.- J., Soh, J.-W., and Lee, Y.-S. 2005. HSP25 inhibits protein kinase Cδ-mediated cell death through direct interaction. J. Biol. Chem. 280:18108–18119.

    Article  PubMed  CAS  Google Scholar 

  • Lemasters, J. J., Nieminen, A.- L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B. 1998. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366:177–196.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.- C., Yin, P.- H., Lu, C.- Y., Chi, C.-W., and Wei, Y.-H. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem. J. 348:425–432.

    Article  PubMed  CAS  Google Scholar 

  • Lê-Quôc, K., and Lê-Quôc, D. 1985. Crucial role of sulfhydryl groups in the mitochondrial inner membrane structure. J. Biol. Chem. 260:7422–7428.

    PubMed  Google Scholar 

  • Lê-Quôc, D., and Lê-Quôc, K. 1989. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Arch. Biochem. Biophys. 273:466–478.

    Article  PubMed  Google Scholar 

  • Li, J., Bombeck, C. A., Yang, S., Kim, Y.-M., and Billiar, T. R. 1999. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J. Biol. Chem. 274:17325–17333.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.- Q., Trudel, L. J., and Wogan, G. N. 2002. Nitric oxide-induced genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells expressing wild-type and mutant p53. Proc. Natl. Acad. Sci. U.S.A. 99:10364–10369.

    Google Scholar 

  • Li, Y., Johnson, N., Capano, M., Edwards, M., and Crompton, M. 2004. Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem. J. 383:101–109.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., and Zhu, G. D. 2002. Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr. Top. Med. Chem. 2:939–971.

    Article  PubMed  CAS  Google Scholar 

  • Liang, H., and Ward, W. F. 2006. PGC-1α: A key regulator of energy metabolism. Adv. Physiol. Educ. 30:145–151.

    Article  PubMed  Google Scholar 

  • Liu, X., Godwin, M. L., and Nowak, G. 2004. Protein kinase C-α inhibits the repair of oxidative phosphorylation after S-(1,2-dichlorovinyl)-L-cysteine injury in renal cells. Am. J. Physiol. 287:F64–F73.

    Article  CAS  Google Scholar 

  • Lock, E. A., and Schnellmann, R. G. 1990. The effect of haloalkene cysteine conjugates on rat renal glutathione reductase and lipoyl dehydrogenase activities. Toxicol. Appl. Pharmacol. 104:180–190.

    Article  PubMed  CAS  Google Scholar 

  • Mannick, J. B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., and Gaston, B. 2001. S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Martindale, J. L., and Holbrook, N. J. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 192:1–15.

    Article  PubMed  CAS  Google Scholar 

  • McKernan, T. B., Woods, E. B., and Lash, L. H. 1991. Uptake of glutathione by renal cortical mitochondria. Arch. Biochem. Biophys. 288:653–663.

    Article  PubMed  CAS  Google Scholar 

  • McKinney, L. L., Picken Jr., J. C., Weakley, F. B., Eldridge, A. C., Campbell, R. E., Cowan, J. C., and Biester, H. E. 1959. Possible toxic factor of trichloroethylene-extracted soybean oil meal. J. Am. Chem. Soc. 81:909–915.

    Article  CAS  Google Scholar 

  • Megyesi, J., Andrade, L., Vieira, Jr., J. M., Safirstein, R. L., and Price, P. M. 2002. Coordination of the cell cycle is an important determinant of the syndrome of acute renal failure. Am. J. Physiol. 283:F810–F816.

    Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658.

    Article  PubMed  CAS  Google Scholar 

  • Norman, J., Badie-Desfooly, B., Nord, E. P., Kurtz, I., Schlosser, J., Chaudhari, A., and Fine, L. G. 1987. EGF-induced mitogenesis in proximal tubular cells: Potentiation by angiotensin II. Am. J. Physiol. 253:F299–F309.

    PubMed  CAS  Google Scholar 

  • Nowak, G. 2002. Protein kinase C-α and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J. Biol. Chem. 277:43377–43388.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, G. 2003. Protein kinase C mediates repair of mitochondrial and transport functions after toxicant-induced injury in renal cells. J. Pharmacol. Exp. Ther. 306:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, G., Bakajsova, D., and Clifton, G. L. 2004. Protein kinase C-ε modulates mitochondrial function and active Na+ transport after oxidant injury in renal cell. Am. J. Physiol. 286:F307–F316.

    Article  CAS  Google Scholar 

  • Nowak, G., Clifton, G. L., Godwin, M. L., and Bakajsova, D. 2006. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am. J. Physiol. 291:F840–F855.

    Article  CAS  Google Scholar 

  • Nowak, G., Keasler, K. B., McKeller, D. E., and Schnellmann, R. G. 1999. Differential effects of EGF on repair of cellular functions after dichlorovinyl-L-cysteine-induced injury. Am. J. Physiol. 276:F228–F236.

    PubMed  CAS  Google Scholar 

  • Nowak, G., and Schnellmann, R. G. 1995. Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells. Am. J. Physiol. 269:C1317–C1325.

    PubMed  CAS  Google Scholar 

  • Orrenius, S., Gogvadze, V., and Zhivotovsky, B. 2007. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47:143–183.

    Article  PubMed  CAS  Google Scholar 

  • Parcellier, A., Brunet, M., Schmitt, E., Col. E., Didelot, C., Hammann, A., Nakayama, K., Nakayama, K. I., Khochbin, S., Solary, E., and Garrido, C. 2006. HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J. 20:E281–E293.

    Article  CAS  Google Scholar 

  • Parker, V. H. 1965. A biochemical study of the toxicity of S-dichlorovinyl-L-cysteine. Food Cosmet. Toxicol. 3:75–84.

    CAS  Google Scholar 

  • Pieczenik, S. R., and Neustadt, J. 2007. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83:84–92.

    Google Scholar 

  • Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., Del Sal, G., Pelicci, P. G., and Rizzuto, R. 2007. Protein kinase Cβ and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663.

    Article  PubMed  CAS  Google Scholar 

  • Polla, B. S., Kantengwa, S., François, D., Salvioli, S., Franceschi, C., Marsac, C., and Cossarizza, A. 1996. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. U.S.A. 93:6458–6463.

    Google Scholar 

  • Rall, L. B., Scott, J., Bell, G. I., Crawford, R. J., Penschow, J. D., Niall, H. D., and Coghlan, J. P. 1985. Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature 313:228–231.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandiran, S., Huang, Q., Dong, J., Lau, S. S., and Monks, T. J. 2002. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem. Res. Toxicol. 15:1635–1642.

    Article  PubMed  CAS  Google Scholar 

  • Rane, M. J., Pan, Y., Singh, S., Powell, D. W., Wu, R., Cummins, T., Chen, Q., McLeish, K. R., and Klein, J. B. 2003. Heat shock protein 27 controls apoptosis by regulating Akt activation. J. Biol. Chem. 278:27828–27835.

    Article  PubMed  CAS  Google Scholar 

  • Rasbach, K. A., and Schnellmann, R. G. 2007a. Signaling of mitochondrial biogenesis following oxidant injury. J. Biol. Chem. 282:2355–2362.

    Article  CAS  Google Scholar 

  • Rasbach, K. A., and Schnellmann, R. G. 2007b. PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun. 355:734–739.

    Article  CAS  Google Scholar 

  • Rohrbach, S., Gruenler, S., Teschner, M., and Holtz, J. 2006. The thioredoxin system in aging muscle: Key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction? Am. J. Physiol. 291: R927–R935.

    CAS  Google Scholar 

  • Rolo, A. P., and Palmeira, C. M. 2006. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Salehmoghaddam, S., Bradley, T., Mikhail, N., Badie-Dezfooly, B., Nord, E. P., Trizna, W., Kheyfets, R., and Fine, L. G. 1985. Hypertrophy of basolateral Na–K pump activity in the proximal tubule of the remnant kidney. Lab. Invest. 53:443–452.

    PubMed  CAS  Google Scholar 

  • Sandau, K. B., Callsen, D., and Brüne, B. 1999. Protection against nitric oxide-induced apoptosis in rat mesangial cells demands mitogen-activated protein kinases and reduced glutathione. Mol. Pharmacol. 56:744–751.

    PubMed  CAS  Google Scholar 

  • Sarkela, T. M., Berthiaume, J., Elfering, S., Gybina, A. A., and Giulivi, C. 2001. The modulation of oxygen radical production by nitric oxide in mitochondria. J. Biol. Chem. 276:6945–6949.

    Article  PubMed  CAS  Google Scholar 

  • Schnellmann, R. G., Cross, T. J., and Lock, E. A. 1989. Pentachlorobutadienyl-L-cysteine uncouples oxidative phosphorylation by dissipating the proton gradient. Toxicol. Appl. Pharmacol. 100:498–505.

    Article  PubMed  CAS  Google Scholar 

  • Schonhoff, C. M., Gaston, B., and Mannick, J. B. 2003. Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 278:18265–18270.

    Article  PubMed  CAS  Google Scholar 

  • Schoolwerth, A. C., and LaNoue, K. F. 1985. Transport of metabolic substrates in renal mitochondria. Annu. Rev. Physiol. 47:143–171.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. V., Baliga, R., Rajapurkar, M., and Fonseca, V. A. 2007. Oxidants in kidney disease. J. Am. Soc. Nephrol. 18:16–28.

    Article  PubMed  CAS  Google Scholar 

  • Shaik, Z. P., Fifer, E. K., and Nowak, G. 2007. Protein kinase B/Akt modulates nephrotoxicant-induced necrosis in renal cells. Am. J. Physiol. 292:F292–F303.

    CAS  Google Scholar 

  • Shapiro, J. I., Elkins, N., Reiss, O. K., Suleymanlar, G., Jin, H., Schrier, R. W., and Chan, L. 1994. Energy metabolism following reduction of renal mass. Kidney Int. 45(Suppl.):S100–S105.

    CAS  Google Scholar 

  • Shirley, D. G., and Walter, S. J. 1991. Acute and chronic changes in renal function following unilateral nephrectomy. Kidney Int. 40:62–68.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. 1985. Oxidative stress: Introductory remarks. In: Oxidative Stress, ed. H. Sies, pp. 1–8. London: Academic Press.

    Google Scholar 

  • Sinha, D., Bannergee, S., Schwartz, J. H., Lieberthal, W., and Levine, J. S. 2004. Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. J. Biol. Chem. 279:10962–10972.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, R. S., and Brunk, U. T. 1992. Mitochondrial production of pro-oxidants and cellular senescence. Mut. Res. 275:295–304.

    CAS  Google Scholar 

  • Stonard, M. D. 1973. Further studies on the site and mechanism of action of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-3-mercaptopropionic acid in rat liver. Biochem. Pharmacol. 22:1329–1335.

    CAS  Google Scholar 

  • Stonard, M. D., and Parker, V. H. 1971. The metabolism of S-(1,2-dichlorovinyl)-L-cysteine by rat liver mitochondria. Biochem. Pharmacol. 20:2429–2437.

    Article  PubMed  CAS  Google Scholar 

  • Storz, P., Döppler, H., and Toker, A. 2005. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol. Cell. Biol. 25:8520–8530.

    Article  PubMed  CAS  Google Scholar 

  • Storz, P., and Toker, A. 2002. 3’-Phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front. Biosci. 7:D886–D902.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., Hosoi, F., Yamaguchi-Iwai, Y., Nakamura, H., Masutani, H., Ueda, S., Nishiyama, A., Takeda, S., Wada, H., Spyrou, G., and Yodoi, J. 2002. Thioredoxin-2 (Trx-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 21:1695–1703.

    Article  PubMed  CAS  Google Scholar 

  • Tapodi, A., Debreceni, B., Hanto, K., Bognar, Z., Wittmann, I., Gallyas Jr., F., Varbiro, G., and Sumegi, B. 2005. Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J. Biol. Chem. 280:35767–35775.

    Article  PubMed  CAS  Google Scholar 

  • Tatoyan, A., and Giulivi, C. 1998. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J. Biol. Chem. 273:11044–11048.

    Article  PubMed  CAS  Google Scholar 

  • Tian, W., Zhang, Z., and Cohen, D. M. 2000. MAPK signaling and the kidney. Am. J. Physiol. 279:F593–F604.

    CAS  Google Scholar 

  • Vamvakas, S., Bittner, D., Dekant, W., and Anders, M. W. 1992. Events that precede and that follow S-(1,2-dichlorovinyl)-L-cysteine-induced release of mitochondrial Ca2+ and their association with cytotoxicity to renal cells. Biochem. Pharmacol. 44:1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Vamvakas, S., Sharma, V. K., Sheu, S.-S., and Anders, M. W. 1990. Perturbations of intracellular calcium distribution in kidney cells by nephrotoxic haloalkenyl cysteine S-conjugates. Mol. Pharmacol. 38:455–461.

    PubMed  CAS  Google Scholar 

  • van de Water, B., Zietbey, J. P., de Bront, H. J. G. M., Mulder, G. J., and Nagelkerke, J. F. 1993. The relationship between intracellular Ca2+ and the mitochondrial membrane potential in isolated proximal tubular cells from rat kidney exposed to the nephrotoxin 1,2-dichlorovinyl-cysteine. Biochem. Pharmacol. 45:2259–2267.

    Google Scholar 

  • van de Water, B., Zoeteweij, J. P., de Bont, H. J. G. M., Mulder, G. J., and Nagelkerke, J. F. 1994. Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential: Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. J. Biol. Chem. 269:14546–14552.

    PubMed  Google Scholar 

  • van de Water, B., Zoeteweij, J. P., de Bont, H. J. G. M., and Nagelkerke, J. F. 1995. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury. Mol. Pharmacol. 48:928–937.

    PubMed  Google Scholar 

  • Vertii, A., Hakim, C., Kotlyarov, A., and Gaestel, M. 2006. Analysis of properties of small heat shock protein Hsp25 in MAPK-activated protein kinase 2 (MK2)-deficient cells: MK2-dependent insolubilization of Hsp25 oligomers correlates with susceptibility to stress. J. Biol. Chem. 281:26966–26975.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, A., Jones, T.W., Vercesi, A.E., Cotgreave, I., Ormstad, K., and Orrenius, S. 1987. Toxicity of S-pentachlorobutadienyl-L-cysteine studied with isolated rat renal cortical mitochondria. Arch. Biochem. Biophys. 258:365–372.

    Google Scholar 

  • Wong, P. S.-Y., and Fukuto, J. M. 1999. Reaction of organic nitrate esters and S-nitrosothiols with reduced flavins: A possible mechanism of bioactivation. Drug Metab. Dispos. 27:502–509.

    PubMed  CAS  Google Scholar 

  • Xu, F., Putt, D. A., Matherly, L. H., and Lash, L. H. 2006. Modulation of expression of rat mitochondrial 2-oxoglutarate carrier in NRK-52E cells alters mitochondrial transport and accumulation of glutathione and susceptibility to chemically induced apoptosis. J. Pharmacol. Exp. Ther. 316:1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Zalups, R. K., Fraser, J., and Koropatnick, J. 1995. Enhanced transcription of metallothionein genes in rat kidney: Effect of uninephrectomy and compensatory renal growth. Am. J. Physiol. 268:F643–F650.

    PubMed  CAS  Google Scholar 

  • Zalups, R. K., and Lash, L. H. 1990. Effects of uninephrectomy and mercuric chloride on renal glutathione homeostasis. J. Pharmacol. Exp. Ther. 254:962–970.

    PubMed  CAS  Google Scholar 

  • Zheng, C., Lin, Z., Zhao, Z. J., Yang, Y., Niu, H., and Shen, X. 2006. MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J. Biol. Chem. 281:37215–37226.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, S., and Schnellmann, R. G. 2006. A death-promoting role for extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther. 319:991–997.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, S., Yan, Y., Daubert, R. A., Han, J., and Schnellmann, R. G. 2007. ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Physiol. 292:F440–F447.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Lash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lash, L.H. (2008). Adaptive Responses and Signal Transduction Pathways in Chemically Induced Mitochondrial Dysfunction and Cell Death. In: Elfarra, A. (eds) Advances in Bioactivation Research. Biotechnology: Pharmaceutical Aspects, vol IX. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77300-1_10

Download citation

Publish with us

Policies and ethics