A Bioeconomic Model by Quantitative Biology to Estimate Swine Production

  • Hui Yuan
  • Surong Xiao
  • Qiujuan Wang
  • Keliang Wu
Conference paper
Part of the The International Federation for Information Processing book series (IFIPAICT, volume 258)

A bioeconomic computer model was constructed to simulate biological and economic inputs and outputs for life cycle swine production. Parameters and relationships used in model were developed and verified by comparison with experimental results in the literature. The bioeconomic model was constructed by several modules such as growth and development, pregnancy, lactation, and replacement gilt etc. The result is: (1) the bioeconomic computer model was efficient way to describe pig production system and research factors’ effect and their interactions. (2) Traits in the model were: oestrus traits; mature weight and feed requirements of sows; longevity of sows; litter size; growth rate and daily feed intake of young pigs and fatteners; mortality rate of pigs. (3) Sow longevity is 2.12 years and yearly culling rate is 47.20%. Yearly farrowing sow is 2.08 and total numbers of farrowings per gilt is 4.62. (4) Average litter size total born is 11.23, litter size born alive is 10.40, litter size weaned is 8.80.

Keywords

Quantitative Genetics Economics Computer Simulation Swine System Analysis 

References

  1. Amer, P. R., G. C. Fox and C. Smith 1994 Economic weights from profit equations: appraising their accuracy in the long run. Anim. Prod. 58:11-18.Google Scholar
  2. Bourdon, B. M. 1998 Shortcoming of current genetic evaluation systems. J. Anim. Sci. 76:2308-2323.CrossRefPubMedGoogle Scholar
  3. Cameron, N. D. 1997 Selection indices and prediction of genetic merit in animal breeding. CAB INTERNATIONAL Wallingford, UK.Google Scholar
  4. Chen, Y. C. 1998 Pig industry in China. Proc. of intern. conf. of pig production. Beijing 1-5.Google Scholar
  5. Chen, R. S. 1996 Pig production in China. In: Pig Production edited by M. R. Taverner and A. C. Dunkin. Elsevier Science Publishers.Google Scholar
  6. Cleveland, E. R., P. J. Cunningham and E. R. Peo, Jr. 1982 Selection for lean growth in swine. J. Anim. Sci. 54(4):719-727.CrossRefGoogle Scholar
  7. Clutter, A. C. and E. W. Brascamp 1998 Genetcs of performance traits. In “The genetics of the pig” edited by M. F. Rothschild and A. Ruvinsky. CAB INTERNATIONAL.Google Scholar
  8. De Hartog, L. A. and C. M. C. van der Peet-Schwering 1995 The use of growth models for piga in practice. Pig News and Information. 16(2):51N-53N.Google Scholar
  9. De Vries, A. G. 1989 A model to estimate economic values of traits in pig breeding. Livest. Prod. Sci. 21:49-66.CrossRefGoogle Scholar
  10. De Vries, A. G. 1989 A method to incorporate competitive position in the breeding goal. Anim. Prod. 48:221-227.CrossRefGoogle Scholar
  11. Emmans, G. C. 1995 Ways of describing pig growth and food intake using equations. Pig News and Information. 16(4):113N-116N.Google Scholar
  12. Emmans, G. C. and I. Kyriazakis 1999 Growth and body composition. In: Kyriazakis, I. (eds). A Quantitative Biology of the Pig. CAB Publishing. 181-197.Google Scholar
  13. Fredeen, H. T. 1980 Pig breeding: current programs vs. Future production requirements. Can. J. Anim. Sci. 60: 241-251.CrossRefGoogle Scholar
  14. Gibson, J. P. and J. W. Wilton 1998 Defining multiple-trait objectives for sustainable genetic improvement. J. Anim. Sci. 76:2303-2307.CrossRefPubMedGoogle Scholar
  15. Harris, D. L. 1998 Livestock improvement: Art, Science, or Industry? J. Anim. Sci. 76:2294-2302.CrossRefPubMedGoogle Scholar
  16. Herrero, M. R. H. Fawcett and J. B. Dent 1999 Bio-economic evaluation of farm management scenarios using integrated simulation and multiple-criteria models. Agricultural Systems 62:169-188.CrossRefGoogle Scholar
  17. King, R. H., J. LeDividich and F. R. Dunshea 1999 Lactation and neonatal growth. In: Kyriazakis, I. (eds). A Quantitative Biology of the Pig. CAB Publishing. 155-180.Google Scholar
  18. Kyriazakis, I. 1999. A Quantitative Biology of the Pig. CAB Publishing.Google Scholar
  19. Mclaren, D. G., D. S. Buchanan and J. E. Williams 1987 Economic evaluation of alternative cross-breeding systems involving four breeds of swine. I. The simulation model. J. Anim. Sci. 65:910-918.CrossRefPubMedGoogle Scholar
  20. Mclaren, D. G., D. S. Buchanan and J. E. Williams 1987 Economic evaluation of alternative crossbreeding systems involving four breeds of swine. II. System Efficiency. J. Anim. Sci. 65:919-928.CrossRefPubMedGoogle Scholar
  21. Pomar, C., D. L. Harris and F. Minvielle 1991 Computer simulation model of swine production systems: I. Modeling the growth of young pigs. J. Anim. Sci. 69:1468-1488.CrossRefPubMedGoogle Scholar
  22. Pomar, C., D. L. Harris and F. Minvielle 1991 Computer simulation model of swine production systems: II. Modeling body composition and weight of female pigs, fetal development, milk production, and growth of suckling pigs. J. Anim. Sci. 69:1489-1502.CrossRefPubMedGoogle Scholar
  23. Schinckel, A. P. and C. F. M. de Lange 1996 Characterization of growth parameters needed as inputs for pig growth models. J. Anim. Sci. 74:2021-2036.CrossRefPubMedGoogle Scholar
  24. Shields, R. G., Jr., D. C. Mahan and F. M. Byers 1983 Efficiacy of deuterium oxide to estimate body composition of growing swine. J. Anim. Sci. 57(1):66-73.CrossRefPubMedGoogle Scholar
  25. Smith, C., D. E. Dickerson, M. W. Tess and G. L. Bennett 1983 Expected relative responses to selection for alternative measures of life cycle economic efficiency of pork productiion. J. Anim. Sci. 56(6):1306-1314.CrossRefPubMedGoogle Scholar
  26. Taverner, M. R. and A. C. Dunkin. 1996 Pig production World Animal Science, C10. Elsevier Science Publishers.Google Scholar
  27. Tess, M. W., G. L. Bennett and G. E. Dickersion 1983 Simulation of genetic changes in life cycle efficiency of pork production. I. A bio-economic model. J. anim. Sci. 56(2):336-353.CrossRefGoogle Scholar
  28. Tess, M. W., G. L. Bennett and G. E. Dickersion 1983 Simulation of genetic changes in life cycle efficiency of pork production. II. Effects of components on efficiency. J. anim. Sci. 56(2): 54-379.Google Scholar
  29. Van der Peet-schwering, C. M. C., L. A. den Hartog and H. J. P. M. Vos 1999 Application of growth models for pigs in practice - Review. Asian-Aus. J. Anim. Sci. 12(2):282-286.Google Scholar
  30. Weatherup, R. N., V. E. Beattie, B. W. Moss, D. J. Kilpatrick and N. Walker 1998 The effect of increasing slaughter weight on the production performance and meat quality of finishing pigs. Anim. Sci. 67:591-600.CrossRefGoogle Scholar
  31. Webb, A.J. 1996 Future challenges in pig genetics. Pig news and Information. 17(1):11-16.Google Scholar
  32. Webb, A. J. 1986 Selection regime by production system interaction in pig improvement: A review of possible csuses and solutions. Livest. Prod. Sci. 14:41-54.CrossRefGoogle Scholar
  33. Whittemore, C. T., J. C. Kerr and N. D. Cameron 1995 An approach to prediction of feed intake in growing pigs using simple body measurements. Agri. Syst. 47: 235-244.CrossRefGoogle Scholar
  34. Whittemore, C. T. 1986 An approach to pig growth modeling. J. Anim. Sci. 63:615-621.CrossRefGoogle Scholar
  35. Whittemore, C. T., J. B. Tullis and G. C. Emmans 1988 Protein growth in pigs. Anim. Prod. 46: 437- 445.CrossRefGoogle Scholar
  36. Wu, Ch. X. 1998 Pig breeding in China. Proc. of intern. conf. of pig production. Beijing 6-8Google Scholar
  37. Zhang, H. F., Zhang Z. Y. 1998 Today and yesterday of swine industry in China & sustainable development in strategy. Proc. of intsern. conf. of pig production. Beijing 703-705.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Hui Yuan
    • 1
  • Surong Xiao
    • 2
  • Qiujuan Wang
    • 1
  • Keliang Wu
    • 1
  1. 1.College of Animal Science and TechnologyChina Agricultural UniversityChina
  2. 2.Shanghai Xiangxin LivestockChina

Personalised recommendations