Skip to main content

Projected Dynamical Systems, Evolutionary Variational Inequalities, Applications, and a Computational Procedure

  • Chapter

Part of the Springer Optimization and Its Applications book series (SOIA,volume 17)

In this paper, we establish the equivalence between the solutions to an evolutionary variational inequality and the critical points of a projected dynamical system in infinite-dimensional spaces. We then present an algorithm, with convergence results, for the computation of solutions to evolutionary variational inequalities based on a discretization method and with the aid of projected dynamical systems theory. A numerical traffic network example is given for illustrative purposes.

Keywords

  • projected dynamical systems
  • evolutionary variational inequalities
  • critical points
  • regularization procedure
  • discretization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77247-9_14
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-77247-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attouch, H., Damlamian, A.: Problèmes d’Évolution Dans Les Espaces de Hilbert et Applications. Journal of Mathématiques Pures et Appliquées, 54, 53–74 (1975)

    MATH  MathSciNet  Google Scholar 

  2. Aubin, J.P., Cellina, A.: Differential Inclusions. Set–Valued Maps and Viability Theory. Springer-Verlag, Berlin, Germany (1984)

    Google Scholar 

  3. Barbagallo, A.: Regularity Results for Time-Dependent Variational and Quasi- Variational Inequalities and Application to Calculation of Dynamic Traffic Network, Math. Models Methods Appl. Sci., 17(2), 277–304 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Barbagallo, A.: Regularity Results for Evolutionary Nonlinear Variational and Quasi-Variational Inequalities with Applications to Dynamic Equilibrium Problems, J. Global Optim., 40(1), 29–39 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Brezis, H.: Inequations d’Evolution Abstraites. C. R. Acad. Sci. Paris (1967)

    Google Scholar 

  6. Cammaroto, F., Di Bella, B.: A Separation Theorem based on the Quasi–Relative Interior and an Application to the Theory of Duality. Journal of Optimization Theory and Applications, 125, 223–229 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C., Gwinner, J.: A Theory of Discretization for Nonlinear Evolution Inequalities Applied to Parabolic Signorini Problems. Annali di Mathematica Pura ed Applicata, 177, 363–394 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Cojocaru, M.G.: Projected Dynamical Systems on Hilbert Spaces. Ph.D. thesis, Queen’s University, Canada (2002)

    Google Scholar 

  9. Cojocaru, M.G., Jonker, L.B.: Existence of Solutions to Projected Differential Equations in Hilbert Spaces. Proceedings of the American Mathematical Society, 132, 183–193 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected Dynamical Systems and Evolutionary Variational Inequalities via Hilbert Spaces with Applications. Journal of Optimization Theory and Applications, 27(3), 1–15 (2005)

    MathSciNet  Google Scholar 

  11. Cojocaru, M.G., Daniele, P., Nagurney, A.: Double-Layered Dynamics: a Unified Theory of Projected Dynamical Systems and Evolutionary Variational Inequalities, European Journal of Operational Research, 175, 494–507 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Cornet, B.: Existence of Slow Solutions for a Class of Differential Inclusions. Journal of Mathematical Analysis and Applications, 96, 130–147 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Dafermos, S.: Traffic Equilibrium and Variational Inequalities. Transportation Science, 14, 42–54 (1980)

    CrossRef  MathSciNet  Google Scholar 

  14. Dafermos, S.: The General Multimodal Network Equilibrium Problem with Elastic Demand. Networks, 12, 57–72 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Dafermos, S., Nagurney, A.: Oligopolistic and Competitive Behavior of Spatially Separated Markets. Regional Science and Urban Economics, 17, 245–254 (1987)

    CrossRef  Google Scholar 

  16. Daniele, P.: Time–Dependent Spatial Price Equilibrium Problem: Existence and Stability Results for the Quantity Formulation Model. Journal of Global Optimization, 28, 283–295 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Daniele, P.: Evolutionary Variational Inequalities and Economic Models for Demand Supply Markets. M3AS: Mathematical Models and Methods in Applied Sciences, 4, 471–489 (2003)

    CrossRef  MathSciNet  Google Scholar 

  18. Daniele, P.: Variational Inequalities for Evolutionary Financial Equilibrium. In: Nagurney, A. (ed) Innovations in financial and economic networks. Edward Elgar Publishing, Cheltenham, England, 84–108 (2003)

    Google Scholar 

  19. Daniele, P., Maugeri, A.: On Dynamical Equilibrium Problems and Variational Inequalities. In: Giannessi, F., Maugeri, A., Pardalos, P. (eds) Equilibrium problems: nonsmooth optimization and variational inequality models. Kluwer Academic Publishers, Dordrecht, The Netherlands, 59–69 (2001)

    Google Scholar 

  20. Daniele, P., Maugeri, A.: The Economic Model for Demand-Supply Problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium problems and variational models. Kluwer Academic Publishers, Dordrecht, The Netherlands, 61–78 (2002)

    Google Scholar 

  21. Daniele, P., Maugeri, A., Oettli, W.: Variational Inequalities and Time–Dependent Traffic Equilibria. C. R. Acad. Sci. Paris t., 326, serie I, 1059–1062 (1998)

    Google Scholar 

  22. Daniele, P., Maugeri, A., Oettli, W.: Time–Dependent Traffic Equilibria. Journal of Optimization Theory and Applications, 103, 543–555 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Dupuis, P.: Large Deviations Analysis of Reflected Diffusions and Constrained Stochastics Approximation Algorithms in Convex Sets. Stochastics, 21, 63–96 (1987)

    MATH  MathSciNet  Google Scholar 

  24. Dupuis, P., Ishii, H.: On Lipschitz Continuity of the Solution Mapping to the Skorokhod Problem with Applications. Stochastics and Stochastics Reports, 35, 31–62 (1990)

    MathSciNet  Google Scholar 

  25. Dupuis, P., Nagurney, A.: Dynamical Systems and Variational Inequalities. Annals of Operations Research, 44, 9–42 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Gabay, D., Moulin, H.: On the Uniqueness and Stability of Nash Equilibria in Noncooperative Games. In: Bensoussan, A., Kleindorfer, P., Tapiero, C.S. (eds) Applied Stochastic Control of Econometrics and Management Science. North-Holland, Amsterdam, The Netherlands (1980)

    Google Scholar 

  27. Geunes, J., Pardalos, P.M.: Network Optimization in Supply Chain Management and Financial Engineering: An Annotated Bibliography. Networks, 42, 66–84 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Gwinner, J.: Time Dependent Variational Inequalities – Some Recent Trends. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium problems and variational models. Kluwer Academic Publishers, Dordrecht, The Netherlands, 225–264 (2003)

    Google Scholar 

  29. Henry, C.: An Existence Theorem for a Class of Differential Equations with Multivalued Right Hand Sides. Journal of Mathematical Analysis and Applications, 41, 179–186 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Isac, G., Cojocaru, M.G.: Variational Inequalities, Complementarity Problems and Pseudo-Monotonicity. Dynamical Aspects. In: Seminar on Fixed Point Theory Cluj-Napoca, Proceedings of the International Conference on Nonlinear Operators, Differential Equations and Applications. Babeş-Bolyai University of Cluj-Napoca, Vol. III, 41–62 (2002)

    Google Scholar 

  31. Isac, G., Cojocaru, M.G.: The Projection Operator in a Hilbert Space and Its Directional Derivative. Consequences for the Theory of Projected Dynamical Systems. Journal of Function Spaces and Applications, 2, 71–95 (2004)

    MATH  MathSciNet  Google Scholar 

  32. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  33. Lions, J.L., Stampacchia, G.: Variational Inequalities. Communications on Pure and Applied Mathematics, 22, 493–519 (1967)

    CrossRef  MathSciNet  Google Scholar 

  34. Maugeri, A.: Convex Programming, Variational Inequalities and Applications to the Traffic Equilibrium Problem. Applied Mathematics and Optimization, 16, 169–185 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Nagurney, A.: Network Economics: A Variational Inequality Approach. Second and Revised Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands (1999)

    Google Scholar 

  36. Nagurney, A., Dong, J.: Supernetworks: Decision-Making for the Information Age. Edward Elgar Publishing, Cheltenham, England (2002)

    Google Scholar 

  37. Nagurney, A., Siokos, S.: Financial Networks: Statics and Dynamics. Springer-Verlag, Heidelberg, Germany (1997)

    Google Scholar 

  38. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic Publishers, Boston, Massachusetts (1996)

    Google Scholar 

  39. Raciti, F.: Equilibria Trajectories as Stationary Solutions of Infinite Dimensional Projected Dynamical Systems. Applied Mathematics Letters, 17, 153–158 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  40. Raciti, F.: Bicriterion Weight Varying Spatial Price Networks. Journal of Optimization Theory and Applications, 122, 387–403 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  41. Smith, M.: Existence, Uniqueness, and Stability of Traffic Equilibria. Transportation Research, 13B, 259–304 (1979)

    Google Scholar 

  42. Steinbach, J.: On a Variational Inequality Containing a Memory Term with an Application in Electro-Chemical Machining. Journal of Convex Analysis, 5, 63–80 (1998)

    MATH  MathSciNet  Google Scholar 

  43. Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory. In: Zarantonello, E.H. (ed) Contributions to Nonlinear Functional Analysis. Academic Press, New York – London (1972)

    Google Scholar 

  44. Zhang, D., Nagurney, A.: On the Stability of Projected Dynamical Systems. Journal of Optimization Theory and Applications, 85, 97–124 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cojocaru, M., Daniele, P., Nagurney, A. (2008). Projected Dynamical Systems, Evolutionary Variational Inequalities, Applications, and a Computational Procedure. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds) Pareto Optimality, Game Theory And Equilibria. Springer Optimization and Its Applications, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77247-9_14

Download citation