Functional Imaging of Adrenocortical Carcinoma

  • Anca M. AvramEmail author
  • Stephanie Hahner


Increased glucose metabolism through the activation of aerobic glycolysis is a central feature of malignant transformation and progression (the Warburg effect) [1]. Malignant tumors can be detected with high sensitivity and specificity by imaging their increased metabolic rate for glucose; and positron emission tomography (PET) using the glucose analog fluorine-18 labeled fluoro-deoxyglucose ([18F]-FDG) has become a routine clinical imaging strategy for staging and restaging most solid tumors. In recent years, metabolic imaging has been increasingly combined with computed tomography (CT) imaging for precise anatomic localization resulting in fusion PET-CT. After intravenous injection [18F]-FDG is transported across cell membrane by sodium-independent, facilitative glucose transporters (GLUTs), and in most malignant tumors GLUT1 is frequently highly expressed. Intracellularly, [18F]-FDG is phosphorylated by hexokinase to [18F]-FDG-6 phosphate, which cannot be further metabolized in the glycolytic pathway and becomes trapped within the cell steadily accumulating in metabolically active cells [2]. This process has enabled accurate metabolic imaging of malignant tumors based on their increased rate of metabolism and glucose utilization as compared to surrounding normal tissues.


Positron Emission Tomography Single Photon Emission Compute Tomography Standardize Uptake Value Tracer Uptake Adrenal Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gillies RJ et al (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42SPubMedCrossRefGoogle Scholar
  2. 2.
    Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49 (Suppl 2):43S–63SPubMedCrossRefGoogle Scholar
  3. 3.
    Hedeland H et al (1968) On the prevalence of adrenocortical adenomas in an autopsy material in relation to hypertension and diabetes. Acta Med Scand 184:211–214PubMedCrossRefGoogle Scholar
  4. 4.
    Abrams HL et al (1950) Metastases in carcinoma: analysis of 1000 autopsied cases. Cancer 3:74–85PubMedCrossRefGoogle Scholar
  5. 5.
    Boland GW et al (1995) Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology. 194(1):131–134.PubMedGoogle Scholar
  6. 6.
    Kumar R et al (2004) 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. J Nucl Med 45(12):2058–2062PubMedGoogle Scholar
  7. 7.
    Jana S et al (2006) FDG-PET and CT characterization of adrenal lesions in cancer patients. Eur J Nucl Med Mol Imaging 33(1):29–35PubMedCrossRefGoogle Scholar
  8. 8.
    Metser U et al (2006) 18F-FDG PET/CT in the evaluation of adrenal masses. J Nucl Med 47(1):32–37PubMedGoogle Scholar
  9. 9.
    Kim HK et al (2007) Preoperative evaluation of adrenal lesions based on imaging studies and laparoscopic adrenalectomy in patients with otherwise operable lung cancer. Lung Cancer 58(3):342–347PubMedCrossRefGoogle Scholar
  10. 10.
    Brady MJ et al (2009) Adrenal nodules at FDG PET/CT in patients known to have or suspected of having lung cancer: a proposal for an efficient diagnostic algorithm. Radiology 250(2):523–530PubMedCrossRefGoogle Scholar
  11. 11.
    Boland GW et al (1998) Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 171:201–204PubMedGoogle Scholar
  12. 12.
    Blake MA et al (2006) Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy – initial experience. Radiology 238(3):970–977PubMedCrossRefGoogle Scholar
  13. 13.
    Han SJ et al (2007) Analysis of adrenal masses by 18F-FDG positron emission tomography scanning. Int J Clin Pract 61(5):802–809PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu A et al (2003) High [18F] 2-fluoro-2-deoxy-D-glucose (FDG) uptake of adrenocortical adenoma showing subclinical Cushing’s syndrome. Ann Nucl Med 17(5):403–406PubMedCrossRefGoogle Scholar
  15. 15.
    Rao SK et al (2004) F-18 fluorodeoxyglucose positron emission tomography-positive benign adrenal cortical adenoma: imaging features and pathologic correlation. Clin Nucl Med 29(5):300–302PubMedCrossRefGoogle Scholar
  16. 16.
    Yun M et al (2001) 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med 42(12):1795–1799PubMedGoogle Scholar
  17. 17.
    Maurea S et al (1999) Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions. AJR Am J Roentgenol.173(1):25–29PubMedGoogle Scholar
  18. 18.
    Shulkin BL et al (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 212:35–41PubMedGoogle Scholar
  19. 19.
    Chong S et al (2006) Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and interpretation pitfalls. Radiographics 26(6):1811–1824; discussion 1824–1826PubMedCrossRefGoogle Scholar
  20. 20.
    Caoili EM et al (2007) Differentiating adrenal adenomas from nonadenomas using (18)F-FDG PET/CT: quantitative and qualitative evaluation. Acad Radiol 14(4):468–475PubMedCrossRefGoogle Scholar
  21. 21.
    Vikram R et al (2008) Utility of PET/CT in differentiating benign from malignant adrenal nodules in patients with cancer. AJR Am J Roentgenol 191(5):1545–1551PubMedCrossRefGoogle Scholar
  22. 22.
    Blake MA et al (2004) Collision adrenal tumors on PET/CT. AJR Am J Roentgenol 183(3):864–865PubMedGoogle Scholar
  23. 23.
    Boland GW et al (2009) PET/CT for the characterization of adrenal masses in patients with cancer: qualitative versus quantitative accuracy in 150 consecutive patients. AJR Am J Roentgenol 192(4):956–962PubMedCrossRefGoogle Scholar
  24. 24.
    Cook DM, Loriaux LD (1996) The incidental adrenal mass. Am J Med 101:88–94PubMedCrossRefGoogle Scholar
  25. 25.
    Herrera MF et al (1991) Incidentally discovered adrenal tumors: an institutional perspective. Surgery 110:1014–1021PubMedGoogle Scholar
  26. 26.
    Han SJ et al (2007) Analysis of adrenal masses by 18F-FDG positron emission tomography scanning. Int J Clin Pract 61(5):802–809PubMedCrossRefGoogle Scholar
  27. 27.
    Tessonnier L et al (2008) Does 18FFDG PET/CT add diagnostic accuracy in incidentally identified non-secreting adrenal tumours? Eur J Nucl Med Mol Imaging 35(11):2018–2025PubMedCrossRefGoogle Scholar
  28. 28.
    Tenenbaum F et al (2004) 18F-fluorodeoxyglucose Adrenocortical tumours? Preliminary results in 13 consecutive patients. Eur J Endocrinol 150:789–792PubMedCrossRefGoogle Scholar
  29. 29.
    Zettinig G et al (2004) Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11_-hydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging 31:1224–1230PubMedCrossRefGoogle Scholar
  30. 30.
    Luton JP et al (1990) Clinical features of ACC, prognostic factors, and the effect of mitotane therapy. N Engl J Med 322:1195PubMedCrossRefGoogle Scholar
  31. 31.
    Icard P et al (2001) ACCs: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons Study Group. World J Surg 25:891–897PubMedCrossRefGoogle Scholar
  32. 32.
    Kendrick ML et al (2001) ACC: surgical progress or status quo? Arch Surg 136:543–549PubMedCrossRefGoogle Scholar
  33. 33.
    Schulick RD, Brennan MF (1999) Long-term survival after complete resection and repeat resection in patients with ACC. Ann Surg Oncol 6:719–726PubMedCrossRefGoogle Scholar
  34. 34.
    Weiss LM et al (1989) Pathologic features of prognostic significance in ACC. Am J Surg Pathol 13:202–206PubMedCrossRefGoogle Scholar
  35. 35.
    Gross MD et al (2007) PET in the diagnostic evaluation of adrenal tumors. Q J Nucl Med Mol Imaging 51:272–283PubMedGoogle Scholar
  36. 36.
    Becherer A et al (2001) FDG-PET in ACC. Cancer Biother Radiopharm 16(4):289–295PubMedCrossRefGoogle Scholar
  37. 37.
    Leboulleux S et al (2006) Diagnostic and prognostic value of 18-fluorodeoxyglucose positron emission tomography in ACC: a prospective comparison with computed tomography. J Clin Endocrinol Metab 91(3):920–925PubMedCrossRefGoogle Scholar
  38. 38.
    Mackie GC et al (2006) Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic ACC. J Clin Endocrinol Metab 91(7):2665–2671. Epub 2006 Apr 18. PubMed PMID: 16621901PubMedCrossRefGoogle Scholar
  39. 39.
    Groussin L et al (2009) 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of Adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab 94(5):1713–1722PubMedCrossRefGoogle Scholar
  40. 40.
    Kreissig R et al (2000) The use of FDG-PET and CT for the staging of ACC in children. Pediatr Radiol 30(5):306PubMedCrossRefGoogle Scholar
  41. 41.
    Binkovitz I et al (2008) Early detection of recurrent pediatric adrenal cortical carcinoma using FDG-PET. Clin Nucl Med 33(3):186–188PubMedCrossRefGoogle Scholar
  42. 42.
    Lieberman LM et al (1971) Diagnosis of adrenal disease by visualization of human adrenal glands with 131 I-19-iodocholesterol. N Engl J Med 285:1387–1393PubMedGoogle Scholar
  43. 43.
    Beierwaltes WH et al (1971) Visualization of human adrenal glands in vivo by scintillation scanning. JAMA 216:275–277PubMedCrossRefGoogle Scholar
  44. 44.
    Sarkar SD et al (1975) A new and superior adrenal scanning agent, NP-59. J Nucl Med 16:1038–1042PubMedGoogle Scholar
  45. 45.
    Sarkar SD et al (1977) A new and superior adrenal imaging agent, 131I-6beta-iodomethyl-19-nor-cholesterol (NP-59): evaluation in humans. J Clin Endocrinol Metab 45:353–362PubMedCrossRefGoogle Scholar
  46. 46.
    Rizza RA et al (1978) Visualization of nonfunctioning adrenal adenomas with iodocholesterol: possible relationship to subcellular distribution of tracer. J Nucl Med 19:458–463PubMedGoogle Scholar
  47. 47.
    Gross MD et al (1981) The role of pharmacologic manipulation in adrenal cortical scintigraphy. Semin Nucl Med 11:128–148PubMedCrossRefGoogle Scholar
  48. 48.
    Gordon L et al (1980) Failure to visualize adrenal glands in a patient with bilateral adrenal hyperplasia. J Nucl Med 21:49–51PubMedGoogle Scholar
  49. 49.
    Lynn MD et al (1986) The influence of hypercholesterolaemia on the adrenal uptake and metabolic handling of 131I-6 beta-iodomethyl-19-norcholesterol (NP-59). Nucl Med Commun 7:631–637PubMedCrossRefGoogle Scholar
  50. 50.
    Counsell RE et al (1980) Tissue distribution of high-density lipoprotein labeled with radioiodinated cholesterol. J Nucl Med 21:852–858PubMedGoogle Scholar
  51. 51.
    Nordblom GD et al (1980) A comparison of cholesteryl oleate and 19-iodocholesteryl oleate as substrates for adrenal cholesterol esterase. J Steroid Biochem 13:463–466PubMedCrossRefGoogle Scholar
  52. 52.
    Lynn MD et al (1986) Enterohepatic circulation and distribution of 131I-6 beta-iodomethyl-19-norcholesterol (NP-59). Nucl Med Commun 7:625–630PubMedCrossRefGoogle Scholar
  53. 53.
    Rubello D et al (2002) Functional scintigraphy of the adrenal gland. Eur J Endocrinol 147:13–28PubMedCrossRefGoogle Scholar
  54. 54.
    Shapiro B et al (1983) Value of bowel preparation in adrenocortical scintigraphy with NP-59. J Nucl Med 24:732–734PubMedGoogle Scholar
  55. 55.
    Kampen WU (2003) Significance of 131I-Norvholesterol Scintigraphy for Diagnosis of Adrenal Dysfunction. Der Nuklearmediziner 26:21–24CrossRefGoogle Scholar
  56. 56.
    Gross MD et al (1984) Scintigraphic localization of adrenal lesions in primary aldosteronism. Am J Med 77:839–844PubMedCrossRefGoogle Scholar
  57. 57.
    Yen RF et al (2009) 131I-6beta-iodomethyl-19-norcholesterol SPECT/CT for primary aldosteronism patients with inconclusive adrenal venous sampling and CT results. J Nucl Med 50:1631–1637PubMedCrossRefGoogle Scholar
  58. 58.
    Avram AM et al (2006) Adrenal gland scintigraphy. Semin Nucl Med 36:212–227PubMedCrossRefGoogle Scholar
  59. 59.
    Gross MD et al (1987) Functional and scintigraphic evaluation of the silent adrenal mass. J Nucl Med 28:1401–1407PubMedGoogle Scholar
  60. 60.
    Kazerooni EA et al (1990) Diagnostic accuracy and pitfalls of [iodine-131]6-beta-iodomethyl-19-norcholesterol (NP-59) imaging. J Nucl Med 31:526–534PubMedGoogle Scholar
  61. 61.
    Maurea S et al (2001) The diagnostic role of radionuclide imaging in evaluation of patients with nonhypersecreting adrenal masses. J Nucl Med 42:884–892PubMedGoogle Scholar
  62. 62.
    Gross MD et al (1984) The relationship of I-131 6 beta-iodomethyl-619-norcholesterol (NP-59) adrenal cortical uptake to indices of androgen secretion in women with hyperandrogenism. Clin Nucl Med 9:264–270PubMedCrossRefGoogle Scholar
  63. 63.
    Gross MD et al (1999) Radionuclide imaging of the adrenal cortex. Q J Nucl Med 43:224–232PubMedGoogle Scholar
  64. 64.
    Kloos RT et al (1995) Incidentally discovered adrenal masses. Endocr Rev 16:460–484PubMedGoogle Scholar
  65. 65.
    Thompson GB, Young WF Jr. (2003) Adrenal incidentaloma. Curr Opin Oncol 15:84–90PubMedCrossRefGoogle Scholar
  66. 66.
    Kloos RT et al (1997) Diagnostic dilemma of small incidentally discovered adrenal masses: role for 131I-6beta-iodomethyl-norcholesterol scintigraphy. World J Surg 21:36–40PubMedCrossRefGoogle Scholar
  67. 67.
    Rifai A et al (1978) Adrenal scintigraphy in low renin essential hypertension. Clin Nucl Med 3:282–286PubMedCrossRefGoogle Scholar
  68. 68.
    Chen YC et al (2009) Seeking the invisible: I-131 NP-59 SPECT/CT for primary hyperaldosteronism. Kidney Int 75:663PubMedCrossRefGoogle Scholar
  69. 69.
    Volpe C et al (2008) The role of adrenal scintigraphy in the preoperative management of primary aldosteronism. Scand J Surg 97:248–253PubMedGoogle Scholar
  70. 70.
    Simon DR. Palese MA (2008) Noninvasive adrenal imaging in hyperaldosteronism. Curr Urol Rep 9:80–87PubMedCrossRefGoogle Scholar
  71. 71.
    Moses DC et al (1974) Efficacy of radiocholesterol imaging of the adrenal glands in Cushing’s syndrome. Surg Gynecol Obstet 139:201–204PubMedGoogle Scholar
  72. 72.
    Gross MD et al (1983) The relationship of adrenal gland iodomethylnorcholesterol uptake to zona glomerulosa function in primary aldosteronism. J Clin Endocrinol Metab 57:477–481PubMedCrossRefGoogle Scholar
  73. 73.
    Barzon L et al (1998) Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab 83:55–62PubMedCrossRefGoogle Scholar
  74. 74.
    La Cava G et al (2003) SPECT semiquantitative analysis of adrenocortical (131)I-6 beta iodomethyl-norcholesterol uptake to discriminate subclinical and preclinical functioning adrenal incidentaloma. J Nucl Med 44:1057–1064PubMedGoogle Scholar
  75. 75.
    Donadio F et al (2009) Role of adrenal gland scintigraphy in patients with subclinical hypercortisolism and incidentally discovered adrenal mass. J Endocrinol Invest 32:576–580PubMedGoogle Scholar
  76. 76.
    Barzon L et al (2001) Overnight dexamethasone suppression of cortisol is associated with radiocholesterol uptake patterns in adrenal incidentalomas. Eur J Endocrinol 145:223–224PubMedCrossRefGoogle Scholar
  77. 77.
    Barzon L et al (1999) Risk factors and long-term follow-up of adrenal incidentalomas. J Clin Endocrinol Metab 84:520–526PubMedCrossRefGoogle Scholar
  78. 78.
    Yoh T et al (2008) Quantitative evaluation of norcholesterol scintigraphy, CT attenuation value, and chemical-shift MR imaging for characterizing adrenal adenomas. Ann Nucl Med 22:513–519PubMedCrossRefGoogle Scholar
  79. 79.
    Maurea S et al (2002) Diagnostic accuracy of radionuclide imaging using 131I nor-cholesterol or meta-iodobenzylguanidine in patients with hypersecreting or non-hypersecreting adrenal tumours. Nucl Med Commun 23:951–960PubMedCrossRefGoogle Scholar
  80. 80.
    Lumachi F et al (2003) Non-invasive adrenal imaging in primary aldosteronism. Sensitivity and positive predictive value of radiocholesterol scintigraphy, CT scan and MRI. Nucl Med Commun 24:683–688PubMedCrossRefGoogle Scholar
  81. 81.
    Lumachi F et al (2002) Usefulness of CT scan, MRI and radiocholesterol scintigraphy for adrenal imaging in Cushing’s syndrome. Nucl Med Commun 23:469–473PubMedCrossRefGoogle Scholar
  82. 82.
    Maurea S et al (2004) Imaging characterization of non-hypersecreting adrenal masses. Comparison between MR and radionuclide techniques. Q J Nucl Med Mol Imaging 48:188–197PubMedGoogle Scholar
  83. 83.
    Reschini E et al (1984) Uptake of 75Se-selenomethylcholesterol by a nonfunctioning adrenocortical adenoma. J Nucl Med Allied Sci 28:221–224PubMedGoogle Scholar
  84. 84.
    Fig LM et al (1988) Adrenal localization in the adrenocorticotropic hormone-independent Cushing syndrome. Ann Intern Med 109:547–553PubMedGoogle Scholar
  85. 85.
    Barzon L et al (2001) Scintigraphic patterns of ACC: morpho-functional correlates. Eur J Endocrinol 145:743–748PubMedCrossRefGoogle Scholar
  86. 86.
    Schteingart DE et al (1981) Iodocholesterol adrenal tissue uptake and imaging adrenal neoplasms. J Clin Endocrinol Metab 52:1156–1161PubMedCrossRefGoogle Scholar
  87. 87.
    Drane WE et al (1983) Imaging of an adrenal cortical carcinoma and its skeletal metastasis. J Nucl Med 24:710–712PubMedGoogle Scholar
  88. 88.
    Chatal JF et al (1976) Uptake of 131I-19-iodocholesterol by an adrenal cortical carcinoma and its metastases. J Clin Endocrinol Metab 43:248–251PubMedCrossRefGoogle Scholar
  89. 89.
    Pasieka JL et al (1992) Adrenal scintigraphy of well-differentiated (functioning) ACCs: potential surgical pitfalls. Surgery 112:884–890PubMedGoogle Scholar
  90. 90.
    Greathouse DJ et al (1984) Pure primary hyperaldosteronism due to adrenal cortical carcinoma. Am J Med 76:1132–1136PubMedCrossRefGoogle Scholar
  91. 91.
    Sakashita S et al (1984) Primary aldosteronism due to adrenal cortical carcinoma. J Urol 132:959–961PubMedGoogle Scholar
  92. 92.
    Shenker Y et al (1986) The scintigraphic localization of mineralocorticoid-producing ACC. J Endocrinol Invest 9:115–120PubMedGoogle Scholar
  93. 93.
    Scott HW Jr. et al (1986) Primary hyperaldosteronism caused by ACC. World J Surg 10:646–653PubMedCrossRefGoogle Scholar
  94. 94.
    Bossuyt A, Somers G (1975) 131I-19-iodocholesterol visualization of an ACC without clinical manifestations. J Nucl Biol Med 19:225–227PubMedGoogle Scholar
  95. 95.
    Wang FF et al (2006) Unusual visualization of an ACC on NP-59 scintiscan. J Formos Med Assoc 105:340–345PubMedCrossRefGoogle Scholar
  96. 96.
    Jonson SD, Welch MJ (1999) Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18F]fluorobenzoate. Nucl Med Biol 26:131–138PubMedCrossRefGoogle Scholar
  97. 97.
    Beierwaltes WH et al (1978) Imaging the adrenal glands with radiolabeled inhibitors of enzymes: concise communication. J Nucl Med 19:200–203PubMedGoogle Scholar
  98. 98.
    Zolle IM et al (2008) New selective inhibitors of steroid 11beta-hydroxylation in the adrenal cortex. Synthesis and structure-activity relationship of potent etomidate analogues. J Med Chem 51:2244–2253PubMedCrossRefGoogle Scholar
  99. 99.
    Beierwaltes WH et al (1976) Localization of radiolabeled enzyme inhibitors in the adrenal gland. J Nucl Med 17:998–1002PubMedGoogle Scholar
  100. 100.
    Hillidge CJ et al (1973) Investigations of azaperone-metomidate anaesthesia in the horse. Vet Rec 93:307–311PubMedCrossRefGoogle Scholar
  101. 101.
    Ryder-Davies P (1973) The use of Metomidate, and intramuscular narcotic for birds. Vet Rec 92:507–509PubMedCrossRefGoogle Scholar
  102. 102.
    Biver A et al (1976) Combined azaperone and metomidate anaesthesia in liver transplantation in the pig. Eur Surg Res 8:81–88PubMedGoogle Scholar
  103. 103.
    Cadle DR, Martin GR (1976) Metomidate as sole anaesthetic agent in tawny owls. Vet Rec 98:91–92PubMedCrossRefGoogle Scholar
  104. 104.
    Green CJ et al (1981) Metomidate etomidate and fentanyl as injectable anaesthetic agents in mice. Lab Anim 15:171–175PubMedCrossRefGoogle Scholar
  105. 105.
    Hansen MK et al (2003) Pharmacokinetic and pharmacodynamic properties of metomidate in turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus). J Vet Pharmacol Ther 26:95–103PubMedCrossRefGoogle Scholar
  106. 106.
    Atucha E et al (2009) Structure-activity relationship of etomidate derivatives at the GABA(A) receptor: Comparison with binding to 11beta-hydroxylase. Bioorg Med Chem Lett 19:4284–4287PubMedCrossRefGoogle Scholar
  107. 107.
    Evans RH, Hill RG (1977) The GABA-mimetic action of etomidate [proceedings]. Br J Pharmacol 61:484PPubMedGoogle Scholar
  108. 108.
    Weber MM et al (1993) Different inhibitory effect of etomidate and ketoconazole on the human adrenal steroid biosynthesis. Clin Investig 71:933–938PubMedGoogle Scholar
  109. 109.
    Fassnacht M (2000) New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line. Eur J Clin Invest 30(Suppl 3):76–82PubMedCrossRefGoogle Scholar
  110. 110.
    Hahner S et al (2008) [123 I]Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J Clin Endocrinol Metab 93:2358–2365PubMedCrossRefGoogle Scholar
  111. 111.
    Ishimura K, Fujita H (1997) Light and electron microscopic immunohistochemistry of the localization of adrenal steroidogenic enzymes. Microsc Res Tech 36:445–453PubMedCrossRefGoogle Scholar
  112. 112.
    Allolio B et al (1988) Nonhypnotic low-dose etomidate for rapid correction of hypercortisolaemia in Cushing’s syndrome. Klin Wochenschr 66:361–364PubMedCrossRefGoogle Scholar
  113. 113.
    Schulte HM et al (1990) Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 70:1426–1430PubMedCrossRefGoogle Scholar
  114. 114.
    Engelhardt D (1994) Steroid biosynthesis inhibitors in Cushing’s syndrome. Clin Investig 72:481–488PubMedCrossRefGoogle Scholar
  115. 115.
    Mitterhauser M et al (2003) In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur J Nucl Med Mol Imaging 30:1398–1401PubMedCrossRefGoogle Scholar
  116. 116.
    Bergstrom M et al (1998) In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med 39:982–989PubMedGoogle Scholar
  117. 117.
    Juhlin C et al (1998) [Differential diagnosis in adrenal gland tumors using PET and [11C]-metomidate]. Nord Med 113:306–307PubMedGoogle Scholar
  118. 118.
    Bergstrom M et al (2000) PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer [11C]-metomidate. J Nucl Med 41:275–282PubMedGoogle Scholar
  119. 119.
    Khan TS et al (2003) [11C]-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging 30:403–410PubMedCrossRefGoogle Scholar
  120. 120.
    Minn H et al (2004) Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG. J Nucl Med 45:972–979PubMedGoogle Scholar
  121. 121.
    Zettinig G et al (2004) Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11beta-hydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging 31:1224–1230PubMedCrossRefGoogle Scholar
  122. 122.
    Hennings J et al (2009) Computed tomography, magnetic resonance imaging and [11C]-metomidate positron emission tomography for evaluation of adrenal incidentalomas. Eur J Radiol 69:314–323PubMedCrossRefGoogle Scholar
  123. 123.
    Karimi F et al (2008) Synthesis of 11C-labelled metomidate analogues as adrenocortical imaging agents. J Label Compd Radiopharm 51:273–276CrossRefGoogle Scholar
  124. 124.
    Wadsak W et al (2006) [18F]FETO for adrenocortical PET imaging: a pilot study in healthy volunteers. Eur J Nucl Med Mol Imaging 33:669–672PubMedCrossRefGoogle Scholar
  125. 125.
    Rendl G et al (2006) Usefulness of the 11 beta-hydroxylase inhibitor 18F FETO in positron emission tomography imaging of adrenal masses. Nuklearmedizin, Abstract Band of the International Symposium of Nuclear Medicine 2006, Bad Gastein 2006 No 17Google Scholar
  126. 126.
    Erlandsson M et al (2009) (18)F-labelled metomidate analogues as adrenocortical imaging agents. Nucl Med Biol 36:435–445PubMedCrossRefGoogle Scholar
  127. 127.
    Schirbel A et al (2004) 4-[123/131I]Iodometomidate as a radioligand for functional diagnosis of adrenal disease: synthesis, structural requirements and biodistribution. Radiochim Acta 92:297–303CrossRefGoogle Scholar
  128. 128.
    Hahner S et al (2009) 131I-Iodometomidate radiotherapy for metastatic ACC – first clinical experience. Presented at European Congress of Endocrinology, ECE 2009, Istanbul, Turkey. Endocrine Abstracts (2009) 20 OC1.3Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Nuclear Medicine/RadiologyUniversity of Michigan Health System, University of MichiganAnn ArborUSA
  2. 2.Department of lnternal Medicine I, Endocrine and Diabetes UnitUniversity Hospital of WürzburgWürzburgGermany

Personalised recommendations