Diagnostic Approach to Incidentaloma

  • Holger S. WillenbergEmail author
  • Stefan R. Bornstein


Adrenal incidentalomas (AI) are masses of the adrenal gland discovered inadvertently during diagnostic imaging for other conditions unrelated to adrenal disease. Incidentally found adrenal tumors were first described more than 25 years ago [1–3]. Improvements in imaging technologies, their increasing availability and use have led to increasing recognition of AI as a public health problem in the aging population [4–6]. Prevalences of AI discovered by CT vary in an age-dependent manner from as low as 0.2% in the young (<30 years) to 6.9% or more in the elderly (50–80 years) [6–9]. AI seems to be more frequent in female subjects [6]. However, they comprise a heterogeneous group of diseases, including primary and secondary tumors, benign and malignant lesions, and endocrine masses with or without clinically relevant autonomous hormone secretion [10]. Patients with an AI have a decreased life expectancy, and evidence-based clinical management is cost-effective [11].


Congenital Adrenal Hyperplasia Primary Hyperaldosteronism Adrenal Mass Adrenal Adenoma Adrenal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Copeland PM (1983) The incidentally discovered adrenal mass. Ann Intern Med 98:940–945PubMedGoogle Scholar
  2. 2.
    Geelhoed GW, Druy EM (1982) Management of the adrenal “incidentaloma”. Surgery 92:866–874PubMedGoogle Scholar
  3. 3.
    Prinz RA et al (1982) Incidental asymptomatic adrenal masses detected by computed tomographic scanning. Is operation required? JAMA 248:701–704Google Scholar
  4. 4.
    Aron DC (2001) The adrenal incidentaloma: disease of modern technology and public health problem. Rev Endocr Metab Disord 2:335–342PubMedCrossRefGoogle Scholar
  5. 5.
    Grumbach MM et al (2003) Management of the clinically inapparent adrenal mass (“incidentaloma”). Ann Intern Med 138:424–429PubMedGoogle Scholar
  6. 6.
    Mansmann G et al (2004) The clinically inapparent adrenal mass: update in diagnosis and management. Endocr Rev 25:309–340PubMedCrossRefGoogle Scholar
  7. 7.
    Granger P, Genest J (1970) Autopsy study of adrenals in unselected normotensive and hypertensive patients. Can Med Assoc J 103:34–36PubMedGoogle Scholar
  8. 8.
    Mantero F et al (2000) A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 85:637–644PubMedCrossRefGoogle Scholar
  9. 9.
    Young WF Jr (2007) The incidentially discovered adrenal mass. N Eugl J Med 356:601–610CrossRefGoogle Scholar
  10. 10.
    Kloos RT et al (1995) Incidentally discovered adrenal masses. Endocr Rev 16:460–484PubMedGoogle Scholar
  11. 11.
    Kievit J, Haak HR (2000) Diagnosis and treatment of adrenal incidentaloma. A cost-effectiveness analysis. Endocrinol Metab Clin North Am 29:69–90PubMedCrossRefGoogle Scholar
  12. 12.
    Bornstein SR et al (1999) Adrenocortical tumors: recent advances in basic concepts and clinical management. Ann Intern Med 130:759–771PubMedGoogle Scholar
  13. 13.
    Ambrosi B et al (1995) Abnormalities of endocrine function in patients with clinically “silent” adrenal masses. Eur J Endocrinol 132:422–428PubMedCrossRefGoogle Scholar
  14. 14.
    Corsello SM et al (1993) Incidentally discovered adrenal masses: a functional and morphological study. Exp Clin Endocrinol 101:131–137PubMedCrossRefGoogle Scholar
  15. 15.
    Gaboardi F et al (1991) Adrenal incidentalomas: what is the role of fine needle biopsy? Int Urol Nephrol 23:197–207PubMedCrossRefGoogle Scholar
  16. 16.
    Guerrero LA (1985) Diagnostic and therapeutic approach to incidental adrenal mass. Urology 26:435–440PubMedCrossRefGoogle Scholar
  17. 17.
    Kasperlik-Załuska AA et al (2008) Incidentally discovered adrenal tumors: a lesson from observation of 1444 patients. Horm Metab Res 40:338–341PubMedCrossRefGoogle Scholar
  18. 18.
    Latronico AC, Chrousos GP (1997) Extensive personal experience: adrenocortical tumors. J Clin Endocrinol Metab 82:1317–1324PubMedCrossRefGoogle Scholar
  19. 19.
    Osella G et al (1994) Endocrine evaluation of incidentally discovered adrenal masses (incidentalomas). J Clin Endocrinol Metab 79:1532–1539PubMedCrossRefGoogle Scholar
  20. 20.
    Terzolo M et al (1995) Adrenal incidentaloma, a five year experience. Minerva Endocrinol 20:69–78PubMedGoogle Scholar
  21. 21.
    Schteingart DE (2000) Management approaches to adrenal incidentalomas. A view from Ann Arbor, Michigan. Endocrinol Metab Clin North Am 29:127–139PubMedCrossRefGoogle Scholar
  22. 22.
    Virkkala A et al (1989) Endocrine abnormalities in patients with adrenal tumours incidentally discovered on computed tomography. Acta Endocrinol (Copenh) 121:67–72Google Scholar
  23. 23.
    Kjellman M et al (2001) Genetic background of adrenocortical tumor development. World J Surg 25:948–956PubMedCrossRefGoogle Scholar
  24. 24.
    Tadjine M et al (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol 68:264–270Google Scholar
  25. 25.
    Tissier F et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65:7622–7627PubMedGoogle Scholar
  26. 26.
    Jaresch S et al (1992) Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab 74:685–689PubMedCrossRefGoogle Scholar
  27. 27.
    Adams JE et al (1983) Computed tomography in adrenal disease. Clin Radiol 34:39–49PubMedCrossRefGoogle Scholar
  28. 28.
    Sutton MG et al (1981) Prevalence of clinically unsuspected pheochromocytoma. Review of a 50-year autopsy series. Mayo Clin Proc 56:354–360PubMedGoogle Scholar
  29. 29.
    Bernini GP et al (1997) Frequency of pheochromocytoma in adrenal incidentalomas and utility of the glucagon test for the diagnosis. J Endocrinol Invest 20:65–71PubMedGoogle Scholar
  30. 30.
    Mannelli M et al (1999) Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol 141:619–624PubMedCrossRefGoogle Scholar
  31. 31.
    Neumann HP et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466PubMedCrossRefGoogle Scholar
  32. 32.
    Pacak K et al (2007) International Symposium on Pheochromocytoma. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. Nat Clin Pract Endocrinol Metab 3:92–102PubMedCrossRefGoogle Scholar
  33. 33.
    Saeger W et al (1998) Hyperplastic and tumorous lesions of the adrenals in an unselected autopsy series. Endocr Pathol 9:235–239PubMedCrossRefGoogle Scholar
  34. 34.
    Kluglich M et al (1993) Ultrasound of incidental tumors of the adrenal gland and endocrine hypertension. Bildgebung 60:144–146PubMedGoogle Scholar
  35. 35.
    Masumori N et al (1998) Detection of adrenal and retroperitoneal masses in a general health examination system. Urology 52:572–576PubMedCrossRefGoogle Scholar
  36. 36.
    Suzuki K et al (1995) Efficacy of an ultrasonic surgical system for laparoscopic adrenalectomy. J Urol 154:484–486PubMedCrossRefGoogle Scholar
  37. 37.
    Kann P et al (1998) Endosonography of the adrenal glands: normal size--pathological findings. Exp Clin Endocrinol Diabetes 106:123–129PubMedCrossRefGoogle Scholar
  38. 38.
    Barzon L et al (1999) Risk factors and long-term follow-up of adrenal incidentalomas. J Clin Endocrinol Metab 84:520–526PubMedCrossRefGoogle Scholar
  39. 39.
    Korobkin M et al (1998) CT time-attenuation washout curves of adrenal adenomas and nonadenomas. AJR Am J Roentgenol 170:747–752PubMedGoogle Scholar
  40. 40.
    Pena CS et al (2000) Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrast-enhanced CT. Radiology 217:798–802PubMedGoogle Scholar
  41. 41.
    Szolar DH, Kammerhuber F (1997) Quantitative CT evaluation of adrenal gland masses: a step forward in the differentiation between adenomas and nonadenomas? Radiology 202:517–521PubMedGoogle Scholar
  42. 42.
    Lee MJ et al (1991) Benign and malignant adrenal masses: CT distinction with attenuation coefficients, size, and observer analysis. Radiology 179:415–418PubMedGoogle Scholar
  43. 43.
    Mayo-Smith WW et al (2001) State-of-the-art adrenal imaging. Radiographics 21:995–1012PubMedGoogle Scholar
  44. 44.
    Francis IR, Korobkin M (1996) Pheochromocytoma. Radiol Clin North Am 34:1101–1112PubMedGoogle Scholar
  45. 45.
    Chezmar JL et al (1988) Adrenal masses: characterization with T1-weighted MR imaging. Radiology 166:357–359PubMedGoogle Scholar
  46. 46.
    Reinig JW et al (1986) MRI of indeterminate adrenal masses. AJR Am J Roentgenol 147:493–496PubMedGoogle Scholar
  47. 47.
    Korobkin M et al (1996) Adrenal adenomas: relationship between histologic lipid and CT and MR findings. Radiology 200:743–747PubMedGoogle Scholar
  48. 48.
    Tsushima Y (1994) Different lipid contents between aldosterone-producing and nonhyperfunctioning adrenocortical adenomas: in vivo measurement using chemical-shift magnetic resonance imaging. J Clin Endocrinol Metab 79:1759–1762PubMedCrossRefGoogle Scholar
  49. 49.
    Outwater EK et al (1996) Adrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequences. Radiology 200:749–752PubMedGoogle Scholar
  50. 50.
    Gross MD et al (2002) Is there a future for adrenal scintigraphy? Nucl Med Commun 23:197–202PubMedCrossRefGoogle Scholar
  51. 51.
    Hahner S et al (2008) [123 I] Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J Clin Endocrinol Metab 93:2358–2365PubMedCrossRefGoogle Scholar
  52. 52.
    Rubello D et al (2002) Functional scintigraphy of the adrenal gland. Eur J Endocrinol 147:13–28PubMedCrossRefGoogle Scholar
  53. 53.
    Shapiro B et al (1985) Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med 26:576–585PubMedGoogle Scholar
  54. 54.
    Tenenbaum F et al (1995) Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucl Med 36:1–6PubMedGoogle Scholar
  55. 55.
    van der Harst E et al (2001) [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab 86:685–693PubMedCrossRefGoogle Scholar
  56. 56.
    Groussin L et al (2009) 18F-FDG PET for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab, PMID: 19190108Google Scholar
  57. 57.
    Boland GW et al (1995) Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[18F]-fluoro-2-deoxy-D-glucose. Radiology 194:131–134PubMedGoogle Scholar
  58. 58.
    Hoegerle S et al (2002) Pheochromocytomas: detection with 18F-DOPA whole body PET – initial results. Radiology 222:507–512PubMedCrossRefGoogle Scholar
  59. 59.
    Ilias I et al (2003) Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 88:4083–4087PubMedCrossRefGoogle Scholar
  60. 60.
    Pacak K et al (2001) 6-[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension 38:6–8PubMedGoogle Scholar
  61. 61.
    Pacak K et al (2001) Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med 134:315–329PubMedGoogle Scholar
  62. 62.
    Pacak K et al (2004) Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 25:568–580PubMedCrossRefGoogle Scholar
  63. 63.
    Shulkin BL et al (2006) Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann N Y Acad Sci 1073:374–382PubMedCrossRefGoogle Scholar
  64. 64.
    Yun M et al (2001) 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med 42:1795–1799PubMedGoogle Scholar
  65. 65.
    Bergström M et al (2000) PET imaging of adrenal cortical tumors with the 11 beta-hydroxylase tracer 11C-metomidate. J Nucl Med 41:2752–2782Google Scholar
  66. 66.
    Weiss LM (1984) Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 8:163–169PubMedCrossRefGoogle Scholar
  67. 67.
    Lachenmayer A et al (2009) Nestin as a Marker in the Classification of Adrenocortical Tumors. Horm Metab Res 41:397–401PubMedCrossRefGoogle Scholar
  68. 68.
    Marx C et al (1996) MHC class II expression – a new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab 81:4488–4491PubMedCrossRefGoogle Scholar
  69. 69.
    Sasano H et al (1995) Transcription factor adrenal 4 binding protein as a marker of adrenocortical malignancy. Hum Pathol 26:1154–1156PubMedCrossRefGoogle Scholar
  70. 70.
    Thompson LD (2002) Pheochromocytoma of the adrenal gland scaled score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 26:551–566PubMedCrossRefGoogle Scholar
  71. 71.
    Kopf D et al (2001) Clinical management of malignant adrenal tumors. J Cancer Res Clin Oncol 127:143–155PubMedCrossRefGoogle Scholar
  72. 72.
    Mody MK et al (1995) Percutaneous CT-guided biopsy of adrenal masses: immediate and delayed complications. J Comput Assist Tomogr 19:434–439PubMedCrossRefGoogle Scholar
  73. 73.
    Welch TJ et al (1994) Percutaneous adrenal biopsy: review of a 10-year experience. Radiology 193:341–344PubMedGoogle Scholar
  74. 74.
    Harisinghani MG et al (2002) Predictive value of benign percutaneous adrenal biopsies in oncology patients. Clin Radiol 57:898–901PubMedCrossRefGoogle Scholar
  75. 75.
    Saboorian MH et al (1995) Fine needle aspiration cytology of primary and metastatic lesions of the adrenal gland. A series of 188 biopsies with radiologic correlation. Acta Cytol 39:843–851PubMedGoogle Scholar
  76. 76.
    Beuschlein F (2007) Adrenal incidentalomas: presentation and clinical work-up. Horm Res 68(Suppl 5):191–194PubMedCrossRefGoogle Scholar
  77. 77.
    Aso Y, Homma Y (1992) A survey on incidental adrenal tumors in Japan. J Urol 147:147814–147881Google Scholar
  78. 78.
    Bernini G et al (2002) Primary aldosteronism in normokalemic patients with adrenal incidentalomas. Eur J Endocrinol 146:523–529PubMedCrossRefGoogle Scholar
  79. 79.
    Caplan RH et al (1994) Subclinical hormone secretion by incidentally discovered adrenal masses. Arch Surg 129:291–296PubMedGoogle Scholar
  80. 80.
    Barzon L et al (1998) Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab 83:55–62PubMedCrossRefGoogle Scholar
  81. 81.
    Terzolo M et al (1998) Subclinical Cushing’s syndrome in adrenal incidentaloma. Clin Endocrinol (Oxf) 48:89–97CrossRefGoogle Scholar
  82. 82.
    Valli N et al (2001) Biochemical screening for subclinical cortisol-secreting adenomas amongst adrenal incidentalomas. Eur J Endocrinol 144:401–408PubMedCrossRefGoogle Scholar
  83. 83.
    Funder JW et al (2008) Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:3266–3281PubMedCrossRefGoogle Scholar
  84. 84.
    Nieman LK et al (2008) The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 93:1526–1540PubMedCrossRefGoogle Scholar
  85. 85.
    Reimondo G et al (2005) Evaluation of the effectiveness of midnight serum cortisol in the diagnostic procedures for Cushing’s syndrome. Eur J Endocrinol 153:803–809PubMedCrossRefGoogle Scholar
  86. 86.
    Masserini B et al (2009) The limited role of midnight salivary cortisol levels in the diagnosis of subclinical hypercortisolism in patients with adrenal incidentaloma. Eur J Endocrinol 160:87–92PubMedCrossRefGoogle Scholar
  87. 87.
    Tanabe A et al (2001) Autonomy of cortisol secretion in clinically silent adrenal incidentaloma. Horm Metab Res 33:444–450PubMedCrossRefGoogle Scholar
  88. 88.
    Montori VM, Young WF Jr (2002) Use of plasma aldosterone concentration-to-plasma renin activity ratio as a screening test for primary aldosteronism: a systematic review of the literature. Endocrinol. Metab Clin North Am 31:619–632CrossRefGoogle Scholar
  89. 89.
    Willenberg HS et al (2009) The serum sodium to urinary sodium to (serum potassium)2 to urinary potassium (SUSPPUP) ratio in patients with primary aldosteronism. Eur J Clin Invest 39:43–50PubMedCrossRefGoogle Scholar
  90. 90.
    Balaş M et al (2010) Indicators of mineralocorticoid excess in the evaluation of primary aldosteronism. Hypertension Res Published online.Google Scholar
  91. 91.
    Médeau V et al (2008) Clinical and Biochemical Characteristics of Normotensive Patients with Primary Aldosteronism: a Comparison with Hypertensive Cases. Clin Endocrinol 69:20–28CrossRefGoogle Scholar
  92. 92.
    Lenders JW et al (2002) Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 287:1427–1434PubMedCrossRefGoogle Scholar
  93. 93.
    Jaresch S et al (1987) Silent adrenal gland tumors in patients with adrenogenital syndrome. Klin Wochenschr 65:627–633PubMedCrossRefGoogle Scholar
  94. 94.
    Seppel T, Schlaghecke R (1994) Augmented 17a-hydroxy-progesterone response to ACTH stimulation as evidence of decreased 21-hydroxylase activity in patients with incidentally discovered adrenal tumours (incidentalomas). Clin Endocrinol 41:445–451CrossRefGoogle Scholar
  95. 95.
    Mantero F et al (1997) Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res 47:284–289PubMedCrossRefGoogle Scholar
  96. 96.
    Terzolo M et al (1996) Different patterns of steroid secretion in patients with adrenal incidentaloma. J Clin Endocrinol Metab 81:740–744PubMedCrossRefGoogle Scholar
  97. 97.
    Willenberg HS et al (2002) The short synacthen test in the evaluation of adrenal masses in patients with malignancies. Endocr Res 4:793–797CrossRefGoogle Scholar
  98. 98.
    Beuschlein F et al (1998) Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors. J Clin Endocrinol Metab 83:2585–2588PubMedCrossRefGoogle Scholar
  99. 99.
    Patócs A et al (2002) Hormonal evaluation and mutation screening for steroid 21-hydroxylase deficiency in patients with unilateral and bilateral adrenal incidentalomas. Eur J Endocrinol 147:349–355PubMedCrossRefGoogle Scholar
  100. 100.
    Francucci CM et al (2002) Bone metabolism and mass in women with Cushing’s syndrome and adrenal incidentaloma. Clin Endocrinol 57:587–593CrossRefGoogle Scholar
  101. 101.
    Garrapa GG et al (2001) Body composition and metabolic features in women with adrenal incidentaloma or Cushing’s syndrome. J Clin Endocrinol Metab 86:5301–5306PubMedCrossRefGoogle Scholar
  102. 102.
    Midorikawa S et al (2001) The improvement of insulin resistance in patients with adrenal incidentaloma by surgical resection. Clin Endocrinol (Oxf) 54:797–804CrossRefGoogle Scholar
  103. 103.
    Osella G et al (2001) The patients with incidentally discovered adrenal adenoma (incidentaloma) are not at increased risk of osteoporosis. J Clin Endocrinol Metab 86:604–607PubMedCrossRefGoogle Scholar
  104. 104.
    Rossi R et al (2000) Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab 85:1440–1448PubMedCrossRefGoogle Scholar
  105. 105.
    Sereg M et al (2009) Atherosclerotic risk factors and complications in patients with non-functioning adrenal adenomas treated with or without adrenalectomy: a long-term follow-up study. Eur J Endocrinol 160:647–655PubMedCrossRefGoogle Scholar
  106. 106.
    Tauchmanova L et al (2001) Bone loss determined by quantitative ultrasonometry correlates inversely with disease activity in patients with endogenous glucocorticoid excess due to adrenal mass. Eur J Endocrinol 145:241–247PubMedCrossRefGoogle Scholar
  107. 107.
    Tsagarakis S et al (1998) The low-dose dexamethasone suppression test in patients with adrenal incidentalomas: comparisons with clinically euadrenal subjects and patients with Cushing’s syndrome. Clin Endocrinol 48:627–633CrossRefGoogle Scholar
  108. 108.
    Barzon L et al (2002) Development of overt Cushing’s syndrome in 386 patients with adrenal incidentaloma. Eur J Endocrinol 146:61–66PubMedCrossRefGoogle Scholar
  109. 109.
    Bülow B et al (2006) Adrenal incidentaloma – follow-up results from a Swedish prospective study. Eur J Endocrinol 154:419–423PubMedCrossRefGoogle Scholar
  110. 110.
    Charbonnel B et al (1981) Does the corticoadrenal adenoma with “pre-Cushing’s syndrome” exist? J Nucl Med 22:1059–1061PubMedGoogle Scholar
  111. 111.
    Terzolo M et al (2002) Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 87:998–1003PubMedCrossRefGoogle Scholar
  112. 112.
    Fagour C et al (2009) Usefulness of adrenal scintigraphy in the follow-up of adrenocortical incidentalomas: a prospective multicenter study. Eur J Endocrinol 160:257–264PubMedCrossRefGoogle Scholar
  113. 113.
    Reincke M et al (1992) Preclinical Cushing’s syndrome in adrenal “incidentalomas”: comparison with adrenal Cushing’s syndrome. J Clin Endocrinol Metab 75:826–832PubMedCrossRefGoogle Scholar
  114. 114.
    Sippel RS, Chen H (2004) Subclinical Cushing’s syndrome in adrenal incidentalomas. Surg Clin N Am 84:875–885PubMedCrossRefGoogle Scholar
  115. 115.
    Tauchmanova L et al (2002) Patients with subclinical Cushing’s syndrome due to adrenal adenoma have Increased cardiovascular risk. J Clin Endocrinol Metab 87:4872–4878PubMedCrossRefGoogle Scholar
  116. 116.
    Reincke M (2000) Subclinical Cushing’s syndrome. Endocrinol Metab Clin North Am 29:43–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Endocrinology, Diabetes and RheumatologyUniversity Hospital DuesseldorfDuesseldorfGermany
  2. 2.Department of Medicine, Carl Gustav Carus Medical SchoolUniversity of DresdenDresdenGermany

Personalised recommendations