New Strategies for the Treatment of Adrenocortical Carcinoma

  • Lawrence S. KirschnerEmail author


As detailed elsewhere in this volume, ACC is a rare disease with a poor prognosis [1]. Although advances have been made in the identification of cytotoxic chemotherapy regimens that produce some benefit in ACC, these cancers remain poorly responsive to standard treatments and the incidence of complete remission is very low.


Vascular Endothelial Growth Factor Hepatocyte Growth Factor Adrenal Tumor Adrenocortical Carcinoma Metastasis Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allolio B, Fassnacht M (2006) Clinical review: Adrenocortical carcinoma: Clinical update. J Clin Endocrinol Metab 91:2027–2037PubMedCrossRefGoogle Scholar
  2. 2.
    Kirschner LS (2006) Emerging treatment strategies for adrenocortical carcinoma: a new hope. J Clin Endocrinol Metab 91:14–21PubMedCrossRefGoogle Scholar
  3. 3.
    Kirschner LS (2002) Signaling pathways in adrenocortical cancer. Ann N Y Acad Sci 968:222–239PubMedCrossRefGoogle Scholar
  4. 4.
    Online Mendelian Inheritance in Man, OMIM™. Johns Hopkins University, Baltimore, MD. Accessed May 1, 2009. URL:
  5. 5.
    Benard J et al (2003) TP53 family members and human cancers. Hum Mutat 21:182–191PubMedCrossRefGoogle Scholar
  6. 6.
    Skogseid B et al (1995) Adrenal lesion in multiple endocrine neoplasia type 1. Surgery 118:1077–1082PubMedCrossRefGoogle Scholar
  7. 7.
    Langer P et al (2002) Adrenal involvement in multiple endocrine neoplasia type 1. World J Surg 26:891–896PubMedCrossRefGoogle Scholar
  8. 8.
    Giordano TJ et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162:521–531PubMedGoogle Scholar
  9. 9.
    Gicquel C et al (1994) Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab 78:1444–1453PubMedCrossRefGoogle Scholar
  10. 10.
    Gicquel C, Le Bouc Y (1997) Molecular markers for malignancy in adrenocortical tumors. Horm Res 47:269–272PubMedCrossRefGoogle Scholar
  11. 11.
    de Fraipont F et al (2005) Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90:1819–1829PubMedCrossRefGoogle Scholar
  12. 12.
    Slater EP et al (2006) Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors. Eur J Endocrinol 154:587–598PubMedCrossRefGoogle Scholar
  13. 13.
    Velazquez-Fernandez D et al (2005) Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138:1087–1094PubMedCrossRefGoogle Scholar
  14. 14.
    Warshamana-Greene GS et al (2005) The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 11:1563–1571PubMedCrossRefGoogle Scholar
  15. 15.
    Warshamana-Greene GS et al (2004) The insulin-like growth factor-I (IGF-I) receptor kinase inhibitor NVP-ADW742, in combination with STI571, delineates a spectrum of dependence of small cell lung cancer on IGF-I and stem cell factor signaling. Mol Cancer Ther 3:527–535PubMedGoogle Scholar
  16. 16.
    Garcia-Echeverria C et al (2004) In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5:231–239PubMedCrossRefGoogle Scholar
  17. 17.
    Hewish M et al (2009) Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Pat Anticancer Drug Discov 4:54–72PubMedCrossRefGoogle Scholar
  18. 18.
    Barlaskar FM et al (2009) Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma. J Clin Endocrinol Metab 94:204–212PubMedCrossRefGoogle Scholar
  19. 19.
    Barnes CJ et al (2007) Insulin-like growth factor receptor as a therapeutic target in head and neck cancer. Clin Cancer Res 13:4291–4299PubMedCrossRefGoogle Scholar
  20. 20.
    Rowinsky EK et al (2007) IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13:5549s–5555sGoogle Scholar
  21. 21.
    Cohen BD et al (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11:2063–2073PubMedCrossRefGoogle Scholar
  22. 22.
    Haluska P et al (2007) Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res 13:5834–5840PubMedCrossRefGoogle Scholar
  23. 23.
    Karp DD et al (2009) Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J Clin Oncol 27:2516–2522Google Scholar
  24. 24.
    Lacy MQ et al (2008) Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 Receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 26:3196–3203PubMedCrossRefGoogle Scholar
  25. 25.
    Trudel S et al (2005) CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105:2941–2948PubMedCrossRefGoogle Scholar
  26. 26.
    Xin X et al (2006) CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin Cancer Res 12:4908–4915PubMedCrossRefGoogle Scholar
  27. 27.
    Chase A et al (2007) Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 110:3729–3734PubMedCrossRefGoogle Scholar
  28. 28.
    Loilome W et al (2009) Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 94:359–366Google Scholar
  29. 29.
    Lonial S et al (2006) Phase I trial of chir-258 in multiple myeloma. J Clin Oncol 24:17502Google Scholar
  30. 30.
    Zhang H et al (2007) FP-1039 (FGFR1:Fc), A soluble FGFR1 receptor antagonist, inhibits tumor growth and angiogenesis. Paper presented at: AACR-NCI-EORTC international conference molecular targets and cancer therapeutics discovery, biology and clinical applications, San Francisco, CAGoogle Scholar
  31. 31.
    Kamio T et al (1990) Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21:277–282PubMedCrossRefGoogle Scholar
  32. 32.
    Samnotra V et al (2007) A phase II trial of gefitinib monotherapy in patients with unresectable adrenocortical carcinoma (ACC). J Clin Oncol 25:15527Google Scholar
  33. 33.
    Sasano H et al (1994) Transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol 7:741–746PubMedGoogle Scholar
  34. 34.
    Buck E et al (2008) Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 68:8322–8332PubMedCrossRefGoogle Scholar
  35. 35.
    Cunningham MP et al (2008) Co-targeting the EGFR and IGF-IR with anti-EGFR monoclonal antibody ICR62 and the IGF-IR tyrosine kinase inhibitor NVP-AEW541 in colorectal cancer cells. Int J Oncol 33:1107–1113PubMedGoogle Scholar
  36. 36.
    Huang F et al (2009) The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res 69:161–170PubMedCrossRefGoogle Scholar
  37. 37.
    Jin Q, Esteva FJ (2008) Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 13:485–498PubMedCrossRefGoogle Scholar
  38. 38.
    Groden J et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  39. 39.
    Nishisho I et al (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi-Yanaga F, Sasaguri T (2007) The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 104:293–302PubMedCrossRefGoogle Scholar
  41. 41.
    Blaker H et al (2004) Analysis of somatic APC mutations in rare extracolonic tumors of patients with familial adenomatous polyposis coli. Genes Chromosomes Cancer 41:93–98PubMedCrossRefGoogle Scholar
  42. 42.
    Seki M et al (1992) Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum Genet 89:298–300PubMedCrossRefGoogle Scholar
  43. 43.
    Wakatsuki S et al (1998) Adrenocortical tumor in a patient with familial adenomatous polyposis: a case associated with a complete inactivating mutation of the APC gene and unusual histological features. Hum Pathol 29:302–306PubMedCrossRefGoogle Scholar
  44. 44.
    Gaujoux S et al (2008) Wnt/beta-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 93:4135–4140PubMedCrossRefGoogle Scholar
  45. 45.
    Tadjine M et al (2008a) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68:264–270Google Scholar
  46. 46.
    Tadjine M et al (2008b) Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clin Endocrinol (Oxf) 69:367–373CrossRefGoogle Scholar
  47. 47.
    Tissier F et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65:7622–7627PubMedGoogle Scholar
  48. 48.
    Bourdeau I et al (2004) Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23:1575–1585PubMedCrossRefGoogle Scholar
  49. 49.
    Horvath A et al (2006) Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 91:584–596PubMedCrossRefGoogle Scholar
  50. 50.
    Lepourcelet M et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102PubMedCrossRefGoogle Scholar
  51. 51.
    Doghman M et al (2008) The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab 93:3222–3225PubMedCrossRefGoogle Scholar
  52. 52.
    Cordon-Cardo C et al (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38:1277–1287PubMedGoogle Scholar
  53. 53.
    Thiebaut F et al (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738PubMedCrossRefGoogle Scholar
  54. 54.
    Fridborg H et al (1994) P-glycoprotein expression and activity of resistance modifying agents in primary cultures of human renal and adrenocortical carcinoma cells. Anticancer Res 14:1009–1016PubMedGoogle Scholar
  55. 55.
    Haak HR et al (1993) Expression of P-glycoprotein in relation to clinical manifestation, treatment and prognosis of adrenocortical cancer. Eur J Cancer 29A:1036–1038Google Scholar
  56. 56.
    Bates S et al (2001) A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer 92:1577–1590PubMedCrossRefGoogle Scholar
  57. 57.
    Menefee ME et al (2008) Effects of the P-glycoprotein (Pgp) antagonist tariquidar (XR-9576; TQD) on Pgp function as well as the toxicity and efficacy of combined chemotherapy in patients with metastatic adrenocortical cancer (mACC). J Clin Oncol 26:2543Google Scholar
  58. 58.
    Wu YW et al (1991) Inhibitory effects of gossypol on adrenal function. Acta Endocrinol (Copenh) 124:672–678Google Scholar
  59. 59.
    Flack MR et al (1993) Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab 76:1019–1024PubMedCrossRefGoogle Scholar
  60. 60.
    Den Boer PJ, Grootegoed JA (1988) Differential effects of (+)- and (–)-gossypol enantiomers on LDH-C4 activity of hamster spermatogenic epithelium in vitro. J Reprod Fertil 83:701–709CrossRefGoogle Scholar
  61. 61.
    Joseph AE et al (1986) Cytotoxicity of enantiomers of gossypol. Br J Cancer 54:511–513PubMedGoogle Scholar
  62. 62.
    Wu DF et al (1988) Determination of gossypol enantiomers in plasma after administration of racemate using high-performance liquid chromatography with precolumn chemical derivatisation. J Chromatogr 433: 141–148PubMedCrossRefGoogle Scholar
  63. 63.
    Liu S, et al (2002) The (–)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res 22:33–38PubMedGoogle Scholar
  64. 64.
    Huang YW et al (2006) Molecular mechanisms of (–)-gossypol-induced apoptosis in human prostate cancer cells. Anticancer Res 26:1925–1933PubMedGoogle Scholar
  65. 65.
    Oliver CL et al (2005) (–)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 4:23–31PubMedCrossRefGoogle Scholar
  66. 66.
    Zetter BR (2008) The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8, 647–654PubMedCrossRefGoogle Scholar
  67. 67.
    Cao Y (2009) Tumor angiogenesis and molecular targets for therapy. Front Biosci 14:3962–3973PubMedCrossRefGoogle Scholar
  68. 68.
    Laakkonen P et al (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67:593–599PubMedCrossRefGoogle Scholar
  69. 69.
    Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591PubMedCrossRefGoogle Scholar
  70. 70.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRefGoogle Scholar
  71. 71.
    Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCrossRefGoogle Scholar
  72. 72.
    Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRefGoogle Scholar
  73. 73.
    Quesada AR et al (2007) Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29:1159–1168PubMedCrossRefGoogle Scholar
  74. 74.
    Folkman J (2006) Antiangiogenesis in cancer therapy–endostatin and its mechanisms of action. Exp Cell Res 312:594–607PubMedCrossRefGoogle Scholar
  75. 75.
    Kurup A et al (2006) Recombinant human angiostatin (rhAngiostatin) in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer: a phase II study from Indiana University. Ann Oncol 17:97–103PubMedCrossRefGoogle Scholar
  76. 76.
    Chan LS et al (2008) Selective targeting of the tumour vasculature. ANZ J Surg 78:955–967PubMedCrossRefGoogle Scholar
  77. 77.
    Shiozaki K et al (2006) Antiangiogenic chimeric anti-endoglin (CD105) antibody: pharmacokinetics and immunogenicity in nonhuman primates and effects of doxorubicin. Cancer Immunol Immunother 55:140–150PubMedCrossRefGoogle Scholar
  78. 78.
    Tsujie M et al (2008) Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int J Cancer 122:2266–2273PubMedCrossRefGoogle Scholar
  79. 79.
    Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41:1452–1462PubMedCrossRefGoogle Scholar
  80. 80.
    Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72:3585–3589PubMedCrossRefGoogle Scholar
  81. 81.
    Hofmeister V et al (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57:1–17PubMedCrossRefGoogle Scholar
  82. 82.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedCrossRefGoogle Scholar
  83. 83.
    Li H, et al (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101:805–815PubMedCrossRefGoogle Scholar
  84. 84.
    Shojaei F, Ferrara N (2008) Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat 11:219–230PubMedCrossRefGoogle Scholar
  85. 85.
    Iiizumi M et al (2008) Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta 1786:87–104PubMedGoogle Scholar
  86. 86.
    Garcia A et al (2007) Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. J Clin Oncol 25:3525CrossRefGoogle Scholar
  87. 87.
    Murdoch C et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631PubMedCrossRefGoogle Scholar
  88. 88.
    Ko JS et al (2009a) Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep 11:87–93PubMedCrossRefGoogle Scholar
  89. 89.
    Ko JS et al (2009b) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157PubMedCrossRefGoogle Scholar
  90. 90.
    Willenberg HS et al (1998) Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing’s syndrome. N Engl J Med 339:27–31PubMedCrossRefGoogle Scholar
  91. 91.
    Coussens LM et al (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  92. 92.
    Takeda T et al (2007) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749PubMedCrossRefGoogle Scholar
  93. 93.
    Palmieri D et al (2005) Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 97:632–642PubMedCrossRefGoogle Scholar
  94. 94.
    Steeg PS et al (2008) Clinical-translational approaches to the Nm23-H1 metastasis suppressor. Clin Cancer Res 14:5006–5012PubMedCrossRefGoogle Scholar
  95. 95.
    Ohtaki T et al (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMedCrossRefGoogle Scholar
  96. 96.
    Sinkovics JG, Horvath JC (2008) Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz) 56(Suppl 1):3s–59sGoogle Scholar
  97. 97.
    Hacein-Bey-Abina S et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193PubMedCrossRefGoogle Scholar
  98. 98.
    Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  99. 99.
    McCormack MP, Rabbitts TH (2004) Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 350:913–922PubMedCrossRefGoogle Scholar
  100. 100.
    Grandi P et al (2009) Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother 9:505–517PubMedCrossRefGoogle Scholar
  101. 101.
    Bachtarzi H et al (2008) Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv 5, 1231–1240PubMedCrossRefGoogle Scholar
  102. 102.
    Breckpot K et al (2008) Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther 8:438–448PubMedCrossRefGoogle Scholar
  103. 103.
    Kirn DH, Thorne SH (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9:64–71PubMedCrossRefGoogle Scholar
  104. 104.
    Ribacka C et al (2008) Cancer, stem cells, and oncolytic viruses. Ann Med 40:496–505PubMedCrossRefGoogle Scholar
  105. 105.
    Chen Y, Huang L (2008) Tumor-targeted delivery of siRNA by non-viral vector: Safe and effective cancer therapy. Expert Opin Drug Deliv 5:1301–1311PubMedCrossRefGoogle Scholar
  106. 106.
    Li SD, Huang L (2008) Targeted delivery of siRNA by nonviral vectors: lessons learned from recent advances. Curr Opin Investig Drugs 9:1317–1323PubMedGoogle Scholar
  107. 107.
    Aharinejad S et al (2009) Targeting stromal-cancer cell interactions with siRNAs. Methods Mol Biol 487:243–266PubMedCrossRefGoogle Scholar
  108. 108.
    Chaudhuri D et al (2009) Targeting the immune system in cancer. Curr Pharm Biotechnol 10:166–184PubMedCrossRefGoogle Scholar
  109. 109.
    Chen X et al (2009) Novel strategies for improved cancer vaccines. Expert Rev Vaccines 8:567–576PubMedCrossRefGoogle Scholar
  110. 110.
    Itoh K et al (2009) Recent advances in cancer vaccines: an overview. Jpn J Clin Oncol 39:73–80PubMedCrossRefGoogle Scholar
  111. 111.
    Engell-Noerregaard L et al (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58: 1–14PubMedCrossRefGoogle Scholar
  112. 112.
    Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383PubMedCrossRefGoogle Scholar
  113. 113.
    Santegoets SJ et al (2008) Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol 84:1364–1373PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine and Department of Molecular Virology, Immunology and Medical GeneticsThe Ohio State UniversityColumbusUSA

Personalised recommendations