TP53 Molecular Genetics

  • Gerard P. ZambettiEmail author
  • Raul C. Ribeiro


The TP53 tumor suppressor normally functions as a transcription factor within a stress response signaling pathway to activate genes that block cell proliferation, repair DNA, inhibit angiogenesis, and induce apoptotic cell death. Collectively, TP53 limits the growth and survival of abnormal cells. It is therefore not surprising that TP53 is the most frequently mutated gene detected in human cancer. Pediatric adrenocortical tumors (ACC) are rare, usually aggressive malignancies that are often associated with inherited or de novo mutations in the TP53 tumor suppressor gene. Recent molecular and biochemical analyses of childhood ACC have revealed new insight into TP53 genotype–phenotype relationships and the factors that cooperate with the loss of TP53 functions to promote tumorigenesis. This chapter will review the TP53 signaling pathway and its clinical implications to pediatric and adult ACC and cancer in general.


TP53 Mutation Adrenocortical Carcinoma Germline TP53 Mutation TP53 Function TP53 Tumor Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Linzer DI, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell17:43–52PubMedCrossRefGoogle Scholar
  2. 2.
    Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263PubMedCrossRefGoogle Scholar
  3. 3.
    Vousden KH, Prives C (2009) Blinded by the Light: the growing complexity of p53. Cell 137:413–431PubMedCrossRefGoogle Scholar
  4. 4.
    Donehower LA et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRefGoogle Scholar
  5. 5.
    Jacks T et al (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol. 4:1–7PubMedCrossRefGoogle Scholar
  6. 6.
    Malkin D et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedCrossRefGoogle Scholar
  7. 7.
    Nutting C et al (2000) A patient with 17 primary tumours and a germ line mutation in TP53: tumour induction by adjuvant therapy? Clin Oncol 12:300–304Google Scholar
  8. 8.
    Zambetti GP (2005) P53 tumor suppressor pathway and cancer. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Murphy ME (2006) Polymorphic variants in the p53 pathway. Cell Death Differ 13:916–920PubMedCrossRefGoogle Scholar
  10. 10.
    Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93:15335–15340PubMedCrossRefGoogle Scholar
  11. 11.
    Petitjean A et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629PubMedCrossRefGoogle Scholar
  12. 12.
    Shaulsky G et al (1990) Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6565–6577PubMedGoogle Scholar
  13. 13.
    Deng C et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684PubMedCrossRefGoogle Scholar
  14. 14.
    el-Deiry WS et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825PubMedCrossRefGoogle Scholar
  15. 15.
    Han J et al (2001) Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98:11318–11323PubMedCrossRefGoogle Scholar
  16. 16.
    Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694PubMedCrossRefGoogle Scholar
  17. 17.
    Yu J et al (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682PubMedCrossRefGoogle Scholar
  18. 18.
    Jeffers JR et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328PubMedCrossRefGoogle Scholar
  19. 19.
    Villunger A et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038PubMedCrossRefGoogle Scholar
  20. 20.
    Cho Y et al (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355PubMedCrossRefGoogle Scholar
  21. 21.
    Fakharzadeh SS et al (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569PubMedGoogle Scholar
  22. 22.
    Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245PubMedCrossRefGoogle Scholar
  23. 23.
    Honda R et al (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27PubMedCrossRefGoogle Scholar
  24. 24.
    Barak Y et al (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12:461–468PubMedGoogle Scholar
  25. 25.
    Barak Y et al (1993) Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 8:1739–1749CrossRefGoogle Scholar
  26. 26.
    Wu X et al (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132PubMedCrossRefGoogle Scholar
  27. 27.
    Jones SN et al (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedCrossRefGoogle Scholar
  28. 28.
    Montes de Oca Luna R et al (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206CrossRefGoogle Scholar
  29. 29.
    Momand J, Zambetti GP (1997) Mdm-2: “big brother” of p53. J Cell Biochem 64:343–352PubMedCrossRefGoogle Scholar
  30. 30.
    Momand J et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459PubMedCrossRefGoogle Scholar
  31. 31.
    Oliner JD et al (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83PubMedCrossRefGoogle Scholar
  32. 32.
    Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772PubMedCrossRefGoogle Scholar
  33. 33.
    Kussie PH et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953PubMedCrossRefGoogle Scholar
  34. 34.
    Sakaguchi K et al (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841PubMedCrossRefGoogle Scholar
  35. 35.
    Shieh SY et al (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334PubMedCrossRefGoogle Scholar
  36. 36.
    de Stanchina E et al (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12:2434–2442PubMedCrossRefGoogle Scholar
  37. 37.
    Quelle DE et al (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000PubMedCrossRefGoogle Scholar
  38. 38.
    Zindy F et al (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433PubMedCrossRefGoogle Scholar
  39. 39.
    Honda R, Yasuda H (1999) Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J 18:22–27PubMedCrossRefGoogle Scholar
  40. 40.
    Kamijo T et al (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Y et al (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734PubMedCrossRefGoogle Scholar
  42. 42.
    Bates S et al (1998) E2F-1 regulation of p14ARF links pRB and p53. Nature 395:124–125PubMedCrossRefGoogle Scholar
  43. 43.
    Kamijo T et al (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659PubMedCrossRefGoogle Scholar
  44. 44.
    Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737PubMedCrossRefGoogle Scholar
  45. 45.
    Williams RT, Sherr CJ (2008) The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias. Cold Spring Harb Symp Quant Biol 73:461–467PubMedCrossRefGoogle Scholar
  46. 46.
    Denissenko MF et al (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432PubMedCrossRefGoogle Scholar
  47. 47.
    Bressac B et al (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431PubMedCrossRefGoogle Scholar
  48. 48.
    Hsu IC et al (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428PubMedCrossRefGoogle Scholar
  49. 49.
    Brash DE et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:1012–1048CrossRefGoogle Scholar
  50. 50.
    Kress S et al (1992) Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52:6400–6403PubMedGoogle Scholar
  51. 51.
    Ziegler A et al (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90:4216–4220PubMedCrossRefGoogle Scholar
  52. 52.
    Chen PL et al (1990) Genetic mechanisms of tumor suppression by the human p53 gene. Science 250:1576–80Google Scholar
  53. 53.
    Friedman PN et al (1993) The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 90:3319–3323PubMedCrossRefGoogle Scholar
  54. 54.
    Hinds PW et al (1990) Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells:a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ 1:571–580PubMedGoogle Scholar
  55. 55.
    Kleihues P et al (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150:1–13PubMedGoogle Scholar
  56. 56.
    Ribeiro RC et al (2001) An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330–9335PubMedCrossRefGoogle Scholar
  57. 57.
    Varley JM et al (1999) Are there low-penetrance TP53 Alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65:995–1006PubMedCrossRefGoogle Scholar
  58. 58.
    Gonzalez KD et al (2009) Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256PubMedCrossRefGoogle Scholar
  59. 59.
    Ohgaki H et al (1993) p53 mutations in sporadic adrenocortical tumors. Int J Cancer 54:408–410PubMedCrossRefGoogle Scholar
  60. 60.
    Reincke M et al (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78:790–794PubMedCrossRefGoogle Scholar
  61. 61.
    Barzon L et al (2001) Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors. Eur J Endocrinol 145:207–212PubMedCrossRefGoogle Scholar
  62. 62.
    Libè R et al (2007) Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin Cancer Res 13:844–850PubMedCrossRefGoogle Scholar
  63. 63.
    Else T et al (2009) Genetic p53 deficiency partially rescues the adrenocortical dysplasia phenotype at the expense of increased tumorigenesis. Cancer Cell 15:465–476PubMedCrossRefGoogle Scholar
  64. 64.
    Latronico AC et al (2001) An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 86:4970–4973PubMedCrossRefGoogle Scholar
  65. 65.
    Achatz MI et al (2007) The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 245:96–102PubMedCrossRefGoogle Scholar
  66. 66.
    Figueiredo BC et al (2006) Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet 43:91–96PubMedCrossRefGoogle Scholar
  67. 67.
    Ribeiro RC et al (2007) Germline TP53 R337H mutation is not sufficient to establish Li-Fraumeni or Li-Fraumeni-like syndrome. Cancer Lett 247:353–355PubMedCrossRefGoogle Scholar
  68. 68.
    DiGiammarino EL et al (2002) A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12–16PubMedCrossRefGoogle Scholar
  69. 69.
    Galea C et al (2005) Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci 14:2993–3003PubMedCrossRefGoogle Scholar
  70. 70.
    West AN et al (2006) Identification of a novel germ line variant hotspot mutant p53-R175L in pediatric adrenal cortical carcinoma. Cancer Res 66:5056–5062PubMedCrossRefGoogle Scholar
  71. 71.
    Ory K et al (1994) Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496–3504PubMedGoogle Scholar
  72. 72.
    Liu G et al (2000) High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97:4174–4179PubMedCrossRefGoogle Scholar
  73. 73.
    Liu G et al (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36:63–68PubMedCrossRefGoogle Scholar
  74. 74.
    Zambetti GP (2007) The p53 mutation “gradient effect” and its clinical implications. J Cell Physiol 213:370–373PubMedCrossRefGoogle Scholar
  75. 75.
    Assumpção JG et al (2008) Association of the germline TP53 R337H mutation with breast cancer in southern Brazil. BMC Cancer 8:357PubMedCrossRefGoogle Scholar
  76. 76.
    Gemignani F et al (2004) A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23:1954–1956PubMedCrossRefGoogle Scholar
  77. 77.
    Costa S et al (2008) Importance of TP53 codon 72 and intron 3 duplication 16 bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8:32PubMedCrossRefGoogle Scholar
  78. 78.
    Wang-Gohrke S et al (1998) p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. Anticancer Res 18:2095–2099PubMedGoogle Scholar
  79. 79.
    Wang-Gohrke S et al (1999) Intron variants of the p53 gene are associated with increased risk for ovarian cancer but not in carriers of BRCA1 or BRCA2 germline mutations. Br J Cancer 81:179–183PubMedCrossRefGoogle Scholar
  80. 80.
    Wang-Gohrke S et al (2002) Intron 3 16 bp duplication polymorphism of p53 is associated with an increased risk for breast cancer by the age of 50 years. Pharmacogenetics 12:269–272PubMedCrossRefGoogle Scholar
  81. 81.
    Bond GL et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 Tumor Suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedCrossRefGoogle Scholar
  82. 82.
    Bougeard G et al (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43:531–533PubMedCrossRefGoogle Scholar
  83. 83.
    Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713PubMedGoogle Scholar
  84. 84.
    Boeckler FM et al (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 105:10360–10365PubMedCrossRefGoogle Scholar
  85. 85.
    Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848PubMedCrossRefGoogle Scholar
  86. 86.
    Evans DG, Lalloo F (2002) Risk assessment and management of high risk familial breast cancer. J Med Genet 39:865–871PubMedCrossRefGoogle Scholar
  87. 87.
    Moule RN et al (2006) Genotype phenotype correlation in Li-Fraumeni syndrome kindreds and its implications for management. Familial Cancer 5:129–133PubMedCrossRefGoogle Scholar
  88. 88.
    Hisada M et al (1998) Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 90:606–611PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of BiochemistrySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of OncologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations