Skip to main content

The Neural and Behavioral Basis of Chemical Communication in Terrestrial Crustaceans

  • Chapter
  • First Online:

Abstract

Within Crustacea, representatives of at least five major taxa have succeeded in the transition from an aquatic to a fully terrestrial lifestyle: Isopoda, Amphipoda, Astacida, Anomura, and Brachyura. Land-living crustaceans are fascinating animals that during a very limited time period at an evolutionary time scale have adapted to a number of diverse terrestrial habitats in which they have become highly successful, and in some case the predominant life forms. Living on land raises new questions regarding the evolution of chemical communication because a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. The odor stimulus also changes from mainly hydrophilic molecules in aqueous solution to mainly hydrophobic in the gaseous phase. Behavioral studies have provided evidence that some land-living crustaceans, namely terrestrial hermit crabs (Anomura, Coenobitidae) have achieved high efficiency in detecting food from a distance and in responding to airborne odors, in short, that they have evolved an excellent sense of distance olfaction. How do crustaceans on land solve the tasks of odor detection and odor information processing and how have the new selection pressures reshaped the sense of smell? In the present contribution, we review the current knowledge on morphological aspects of the olfactory system of terrestrial crustaceans focusing on representatives of the Anomura and Isopoda. Terrestrial members of the latter taxon have greatly reduced first antennae and seem to have given up their deutocerebral olfactory pathway. Instead, they have shifted gustatory abilities to the second antennae and the tritocerebrum but it remains to be shown if these animals evolved an effective system of aerial olfaction. Within the Anomura, however, terrestrial hermit crabs (Coenobitidae) have greatly inflated those parts of the brain that are responsible for primary olfactory processing, the olfactory lobes. Electro-antennographic detection studies with the well developed first antennae of the giant robber crab Birgus latro demonstrated the capacity of this organ to detect volatile chemical information. These experiments point to an olfactory system as sensitive as the most sensitive general odor detecting olfactory sensory neurons found in insects and that therefore is well suited to explore the terrestrial olfactory landscape. We also summarize ongoing efforts to explore olfactory-guided behavior of the giant robber crab on Christmas Island, Indian Ocean. We conclude that comparative studies between fully aquatic crustaceans and closely related terrestrial taxa provide a powerful means of investigating the evolution of chemosensory adaptations in these two environments. Future studies must address three main aspects: the behavior towards active odors (both pheromones and other semiochemicals) has to be clearly shown and quantified, the chemical identity of key odor cues and the source of these compounds have to be established, and the sensory base of detection and information processing in the chemical senses need to be further studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beltz BS, Kordas K, Lee MM, Long JB, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455:260–269

    Article  PubMed  Google Scholar 

  • Bliss DE, Mantel LH (1968) Adaptations of crustaceans to land: a summary and analysis of new findings. Am Zool 8:673–685

    Google Scholar 

  • Burggren WW, McMahon BR (1988) Biology of the land crabs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Drew MM, Harzsch S, Stensmyr M, Erland S, Hansson BS (2010) A review of the biology and ecology of the Robber Crab, Birgus latro (Linnaeus, 1758) (Anomura: Coenobitidae). Zool Anz 249:45–67

    Article  Google Scholar 

  • Friend JA, Richardson AMM (1986) Biology of terrestrial amphipods. Annu Rev Entomol 31:25–48

    Article  Google Scholar 

  • Ghiradella H, Case J, Cronshow J (1968a) Fine structure of the aesthetesc hairs of Coenobita compressus Edwards. J Morphol 124:361–385

    Article  CAS  PubMed  Google Scholar 

  • Ghiradella H, Cronshow J, Case J (1968b) Fine structure of the aestetasc hairs of Pagurus hirsutiusculus in the light and electron microscope. Protoplasma 66:1–20

    Article  Google Scholar 

  • Greenaway P (1988) Ion and water balance. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 211–248

    Chapter  Google Scholar 

  • Greenaway P (1999) Physiological diversity and the colonization of land. In: Schram FR, von Vaupel Klein JC (eds) Proceedings of the fourth international crustacean congress. Brill Academic Publishers, Amsterdam, pp 823–842

    Google Scholar 

  • Greenaway P (2003) Terrestrial adaptations in Anomura (Crustacea: Decapoda). Mem Mus Vic 60:13–26

    Google Scholar 

  • Grubb P (1971) Ecology of terrestrial decapod crustaceans on Aldabra. Philos Trans R Soc Lond Ser B 260:411–416

    Article  Google Scholar 

  • Hansson BS, Ochieng SA, Grosmaitre X, Anton S, Njagi PGN (1996) Physiological responses and central nervous projections of antennal olfactory receptor neurons in the adult desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J Comp Physiol A 179:157–167

    Article  CAS  Google Scholar 

  • Hansson BS, Larsson ML, Leal WS (1999) Green leaf volatile detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol Entomol 24:121–126

    Article  CAS  Google Scholar 

  • Hanström B (1947) The brain, the sense organs, and the incretory organs in the head in the Crustacea Malacostraca. K Fysiogr Sällsk Handl 48:1–45

    Google Scholar 

  • Harms JW (1932) Die Realisation von Genen und die consecutive adaptation. II. Birgus latro L. als Landkrebs und seine Beziehungen zu den Coenobiten. Z Wiss Zool 140:167–290

    Google Scholar 

  • Harms JW (1937) Lebenslauf und Stammesgeschichte des Birgus latro L. von den Weihnachtsinseln. Zeitschr Naturwiss Jena 75:1–34

    Google Scholar 

  • Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54

    Chapter  Google Scholar 

  • Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9:58

    Article  PubMed  Google Scholar 

  • Harzsch S, Stensmyr M, Hansson BS (2007) Transition from sea to land: adaptations of the central olfactory pathway in the giant robber crab. In: Poster, 7th Göttingen meeting of the German Neuroscience Society, 29.3.-1.4.2007. Online abstracts: http://www.neuro.uni-goettingen.de/NBCsearch/NBC07/nbc07_ab/TS2/TS2-3A.pdf

  • Harzsch S, Sandeman D, Chaigneau J (in press) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology – crustacea. Koninklijke Brill Academic Publishers, Leiden

    Google Scholar 

  • Hering W (1981) Zur chemischen Ökologie der tunesischen Wüstenassel Hemilepistus reaumuri. Unpublished PhD thesis. Ruprecht-Karl-University of Heidelberg, Heidelberg

    Google Scholar 

  • Hoese B (1989) Morphological and comparative studies on the second antennae of terrestrial isopods. Monitore Zool Ital (NS) Monogr 4:127–152

    Google Scholar 

  • Kacem-Lachkar H (2000) Contribution to the study of the nervous system, the accessory glands, and the neurosecretory cells of Hemilepistus reaumuri (Audoin, 1826) (Isopoda, Oniscidea). Crustaceana 73:933–948

    Article  Google Scholar 

  • Kaestner A (1993) Lehrbuch der Speziellen Zoologie. In: Gruner HE, Moritz M, Dunger W (eds) Wirbellose Tiere; 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer Verlag, Jena, pp 1–1279

    Google Scholar 

  • Linsenmair KE (1987) Kin recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri. In: Fletcher D, Michener C (eds) Kin recognition in animals. Wiley, Chichester, pp 121–207

    Google Scholar 

  • Linsenmair KE (2007) Sociobiology of terrestrial isopods. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems – crustaceans as model organisms. Oxford University Press, Oxford, pp 339–364

    Google Scholar 

  • Morritt D, Spicer JI (1998) The physiological ecology of talitrid amphipods: an update. Can J Zool 76:1965–1982

    Article  Google Scholar 

  • Ochieng SA, Hallberg E, Hansson BS (1998) Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res 291:525–536

    Article  CAS  PubMed  Google Scholar 

  • Paul DH (2003) Neurobiology of the Anomura: Paguroidea, Galathoidea and Hippoidea. Mem Mus Vic 60:3–11

    Google Scholar 

  • Powers LW, Bliss DE (1983) Terrestrial adaptations. In: Verneberg FJ, Vernberg WB (eds) The biology of Crustacea Vol. 8: environmental adaptations. Academic, New York, pp 272–333

    Google Scholar 

  • Richardson AMM (2007) Behavioral ecology of semiterrestrial crayfish. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, New York, pp 319–338

    Chapter  Google Scholar 

  • Richardson AMM, Swain R (2000) Terrestrial evolution in Crustacea: the talitrid amphipod model. Crustac Issues 12:807–816

    Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analyses of the Malacostraca (Crustacea). J Zool Systemat Res 39:113–136

    Article  Google Scholar 

  • Rittschof D, Cohen JH (2004) Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Rittschof D, Sutherland JP (1986) Field studies on chemically mediated behavior in land hermit crabs: volatile and nonvolatile odors. J Chem Ecol 12:1273–1284

    Article  Google Scholar 

  • Rumpf, H. 1986. Freilanduntersuchungen zur Ethologie, Ökologie und Populationsbiologie des Palmendiebes, Birgus latro L. (Paguridae, Crustacea, Decapoda), auf Christmas Island (Indischer Ozean). Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Biologie der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhems-Universität zu Münster, pp 1–122

    Google Scholar 

  • Ryan EP (1966) Pheromone: evidence in a decapod crustacean. Science 151(3708):340–341

    Article  CAS  PubMed  Google Scholar 

  • Sandeman DC, Sandeman RE, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  • Schmitz EH (1989) Anatomy of the central nervous system of Armadillidium vulgare (Latreille) (Isopoda). J Crust Biol 9:217–227

    Article  Google Scholar 

  • Schneider DZ (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori. Z Vgl Physiol 40:8–41

    Article  Google Scholar 

  • Scholtz G, Richter S (1995) Phylogenetic systematics of the repatantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328

    Article  Google Scholar 

  • Seelinger G (1977) Der Antennenendzapfen der tunesischen Wüstenassel Hemilepistus reaumuri, ein kompleyes Sinnesorgan (Crustacea, Isopoda). J Comp Physiol 113:95–103

    Article  Google Scholar 

  • Seelinger G (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J Comp Physiol 152:219–229

    Article  CAS  Google Scholar 

  • Stensmyr M, Erland S, Hallberg E, Wallén R, Greenaway P, Hansson B (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116–121

    Article  CAS  PubMed  Google Scholar 

  • Thacker RW (1994) Volatile shell-investigation cues of land hermit crabs: effect of shell fit, detection of cues from other hermit crab species, and cue isolation. J Chem Ecol 20:1457–1481

    Article  CAS  Google Scholar 

  • Thacker RW (1996) Food choices of land hermit crabs (Coenobita compressus H. Milne Edwards) depend on past experience. J Exp Mar Biol Ecol 199:179–191

    Article  Google Scholar 

  • Thacker RW (1998) Avoidance of recently eaten foods by land hermit crabs, Coenobita compressus. Anim Behav 33:485–496

    Article  Google Scholar 

  • Vannini M, Chelazzi G (1981) Orientation of Coenobita rugosus (Crustacea: Anomura): a field study on Aldabra. Mar Biol 64:135–140

    Article  Google Scholar 

  • Vannini M, Ferretti J (1997) Chemoreception in two species of terrestrial hermit crabs (Decapoda: Coenobitidae). J Crust Biol 17:33–37

    Article  Google Scholar 

  • Wägele JW (1989) Evolution und phylogenetisches System der Isopoda. Zoologica 47:1–262

    Google Scholar 

  • Wägele JW, Holland B, Dreyer H, Hackethal B (2003) Searching factors causing implausible non-monophyly: ssu rDNA phylogeny of Isopoda Asellota (Crustacea: Peracarida) and faster evolution in marine than in freshwater habitats. Mol Phylogenet Evol 28:536–551

    Article  PubMed  Google Scholar 

  • Walker G (1935) The central nervous system of Oniscus (Isopoda). J Comp Neurol 62:197–237

    Article  Google Scholar 

  • Warburg MR (1968) Behavioral adaptations of terrestrial isopods. Am Zool 8:545–559

    Google Scholar 

  • Wetzer R (2002) Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). J Crust Biol 22:1–14

    Article  Google Scholar 

  • Wirkner CS, Richter S (2003) The circulatory system in Phreatoicidea: implications for the isopod ground pattern and peracarid phylogeny. Arthropod Struct Dev 32:337–347

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge, 391pp

    Book  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was supported by the Max Planck Society. We gratefully acknowledge the cooperation of the CI branch of National Parks, Australia in our studies of the robber crab. We cordially thank Dr. Hans Pohl (Phyletisches Museum Jena, Friedrich-Schiller-Universität Jena), PD Dr. Wieland Hertel, Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena) and Dr. Carsten H.G. Müller (Universität Rostock) for contributing images. Swetlana Laubrecht kindly assisted compiling the reference list, and Verena Rieger with the immunohistochemical experiments with the isopods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill S. Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hansson, B.S., Harzsch, S., Knaden, M., Stensmyr, M. (2010). The Neural and Behavioral Basis of Chemical Communication in Terrestrial Crustaceans. In: Breithaupt, T., Thiel, M. (eds) Chemical Communication in Crustaceans. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77101-4_8

Download citation

Publish with us

Policies and ethics