Skip to main content

Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

In this chapter we elaborate on the dynamical basis for the time scales of change in motor learning. It is known that in both oscillatory and growth/decay processes the exponential characterizes the time scales of change. A few characteristic or even multiple time scales can arise from continually evolving landscape dynamics due to bifurcations between attractor organization and the transient dynamics toward and away from fixed points. These principles are applied to the determination of the laws of learning and the related duality between the difficulty of the task and the skill of the learner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.

    PubMed  CAS  Google Scholar 

  • Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer.

    Google Scholar 

  • Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal physiology. Oxford: Oxford University Press.

    Google Scholar 

  • Brown, S., & Heathcote, A. (2003). Averaging learning curves across and within participants. Behavioral Research Methods, Instrumentation and Computers, 35, 11–21

    Article  Google Scholar 

  • Chiang, H., Slobounov, S. M., & Ray, W. (2004). Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clinical Neurophysiology, 115, 1033–1043.

    Article  PubMed  CAS  Google Scholar 

  • Corcos, D. M., Jaric, S. & Gottlieb, G. L. (1996). Electromyographic analysis of performance enhancement. In: Zelaznik, H. (Ed.). Advances in motor learning and control (pp. 123–153). Champaign, Ill: Human Kinetics.

    Google Scholar 

  • Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2, 153–166.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.

    Google Scholar 

  • Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: implications of a quantitative analysis. Proceedings of the National Academy of Science USA, 101, 13124–13131.

    Article  CAS  Google Scholar 

  • Haken, H. (1983). Synergetics: An introduction (3rd Ed.). Berlin: Springer-Verlag.

    Google Scholar 

  • Haliday, D., Resnick, R., & Walker, J. (2005). Fundamentals of Physics (6th Ed.). New York: Wiley.

    Google Scholar 

  • Hallett, M., & Grafman, J. (1997). Executive function and motor skill learning. International Review of Neurobiology, 41, 297–323

    Article  PubMed  CAS  Google Scholar 

  • Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207

    Article  CAS  Google Scholar 

  • Hilgard, E. R. (1956). Theories of learning (2 nd Ed.). New York: McGraw-Hill.

    Google Scholar 

  • Holding, D. H. (1965). Principles of training. Oxford: Pergamon.

    Google Scholar 

  • Ivry, R. (1996). Representational issues in motor learning: Phenomena and theory. In H. Heuer & S. W. Keele (Eds.). Handbook of perception and action Volume 2: Motor skills (pp. 263–330). London: Academic Press.

    Google Scholar 

  • Kaplan, D., & Glass, L. (1995). Understanding nonlinear dynamics. New York: Springer-Verlag.

    Google Scholar 

  • ∗Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • ∗Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement: Theoretical and experimental investigations. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • ∗Kugler, P.N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 1–49). New York: North–Holland.

    Google Scholar 

  • Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1982). On the control and coordination of naturally developing systems. In J. A. S. Kelso & J. E. Clark (Eds.), The development of movement control and co-ordination (pp. 5–78). New York: Wiley.

    Google Scholar 

  • Lane, N. E. (1987). Skill acquisition rates and patterns: Issues and training implications. New York: Springer-Verlag.

    Google Scholar 

  • Lashley, K. (1950). In search of the engram. Symposia of the Society for Experimental Biology, 4:454–482.

    Google Scholar 

  • Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2003). Beyond curve fitting: A dynamical systems account of exponential learning in a discrete positioning task. Journal of Motor Behavior, 35, 197–207.

    Article  PubMed  Google Scholar 

  • Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2004). Beyond curve fitting to inferences about learning. Journal of Motor Behavior, 36, 233–238.

    Article  Google Scholar 

  • Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2006). Qualitative and quantitative change in the dynamics of motor learning. Journal of Experimental Psychology: Human Perception and Performance, 32, 380–393.

    Article  PubMed  Google Scholar 

  • Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2007). Self-organized criticality predicts success rates in a self-paced motor learning task. Journal of Sport & Exercise Psychology, 29. 106.

    Google Scholar 

  • Liu, Y-T., Mayer-Kress, G., Hong, S. L., & Newell, K. M. (2007). Adaptation and learning: Characteristic time scales of performance dynamics. Manuscript under review.

    Google Scholar 

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • MacKay, D. (1980). The motor program: Back to the computer. Trends in Neuroscience, 3, 97–100.

    Article  Google Scholar 

  • Magill, R. A. (1985). Motor learning: Concepts and applications. Dubuque, Iowa: Brown.

    Google Scholar 

  • Mayer-Kress, G. J., Newell, K. M., & Liu, Y-T. (1998). What can we learn from learning curves? InterJournal of Complexity, 246.

    Google Scholar 

  • Mazur, J. E., & Hastie, R. (1978). Learning as accumulation: A reexamination of the learning curve. Psychological Bulletin, 85, 1256–1274.

    Article  PubMed  CAS  Google Scholar 

  • Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artefact: insights from response surface analysis. Memory and Cognition, 28, 832–840.

    Google Scholar 

  • *Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Newell, K. M. (1985). Coordination, control and skill. In D. Goodman, I. Franks & R. Wilberg (Eds.), Differing perspectives in motor learning, memory and control. Amsterdam: North-Holland.

    Google Scholar 

  • ∗Newell, K. M. (1986). 6straints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Eds.), Motor skill acquisition in children: Aspects of coordination and control (pp. 341–360). Amsterdam: Martinies NIJHOS.

    Google Scholar 

  • Newell, K. M. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–237.

    Article  PubMed  CAS  Google Scholar 

  • Newell, K. M. (1996). Change in movement and skill: Learning, retention, and transfer. In M. Latash & M. Turvey (Eds.), Dexterity and its development. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • ∗Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108, 57–82.

    Article  PubMed  CAS  Google Scholar 

  • Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2003). A dynamical systems interpretation of epigenetic landscapes for infant motor development. Infant Development and Behavior, 26, 449–472.

    Article  Google Scholar 

  • Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2005). Learning in the brain-computer interface: Insights about degrees of freedom and degeneracy in a landscape model of motor learning. Cognitive Processing, 6, 37–47.

    Article  Google Scholar 

  • Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance. Thousand Oaks, C.A.: Sage

    Google Scholar 

  • Rowland, T. (2004). Dual Vector Space. From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/DualVectorSpace.html

  • Salmoni, A. W. (1989). Motor skill learning. In D. H. Holding (Ed.), Human skills (pp. 197–227). New York: Wiley.

    Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.

    Article  Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (1999). Motor control and learning (3rd Ed.). Champaign, Ill: Human Kinetics.

    Google Scholar 

  • Schöner, G. (1989). Learning and recall in a dynamic theory of coordination patterns. Biological Cybernetics, 62, 39–54.

    Article  PubMed  Google Scholar 

  • Schroeder, M. (1991). Fractals, chaos, power laws: Minutes from an infinite paradise. New York: Freeman.

    Google Scholar 

  • Sherrington, C. S. (1906). The integrative action of the nervous system. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1–36.

    Article  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos. New York: Addison-Wesley.

    Google Scholar 

  • Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39, 212–222.

    Article  Google Scholar 

  • Thurstone, L. L. (1919). The learning curve equation. Psychological Monographs, XXVI, Whole No. 114.

    Google Scholar 

  • Toma, K., & Nakai, T. (2002). Functional MRI in human motor control studies and clinical applications. Magnetic Resonance and Medical Science, 1, 109–120.

    Article  Google Scholar 

  • Underwood, B. (1949). Experimental psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Vallacher, R. R., & Nowak, A. J. (1994). Dynamical systems in social psychology. New York: Academic Press.

    Google Scholar 

  • Ward, L. M. (2002). Dynamical cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Weisstein, E.W. (1999). Metric Tensor. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/MetricTensor.html

  • Woodworth, R. A., & Schlosberg, H. (1938). Experimental psychology. New York: Holt.

    Google Scholar 

  • Zanone, P. G., & Kelso, J. A. S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.

    Article  PubMed  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl M. Newell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newell, K.M., Liu, YT., Mayer-Kress, G. (2009). Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_24

Download citation

Publish with us

Policies and ethics