Skip to main content

Tools for Design and Analysis of Experiments

  • Chapter
  • First Online:
Enclosed Experimental Ecosystems and Scale

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adey, W.H. and Loveland. K. 1998. Dynamic Aquaria: Building Living Ecosystems, 2nd edition. Academic Press, San Diego, CA.

    Google Scholar 

  • Baretta-Bekker, J.G., Riemann, B. Baretta and J.W. Koch Rasmussen. E. 1994. Testing the microbial loop concept by comparing mesocosm data with results from a dynamical simulation model. Marine Ecology-Progress Series 106:187–198.

    Article  Google Scholar 

  • Bartleson, R.D., Kemp and W.M. Stevenson. J.C. 2005. Use of a simulation model to examine effects of nutrient loading and grazing on Potamogeton perfoliatus L. communities in microcosms Ecological Modeling 185:483–512.

    Article  Google Scholar 

  • Berg, G.M., Glibert and P.M. Chen. C.-C. 1999. Dimension effects of enclosures on ecological processes in pelagic systems. Limnology and Oceanography 44:1331–1340.

    Article  CAS  Google Scholar 

  • Beyers, R.J. and Odum. H.T. 1993. Ecological Microcosms. Springer-Verlag, New York.

    Book  Google Scholar 

  • Bonner, J.T. 1965. Size and Cycle: An Essay on the Structure of Biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Brinkman, A.G., Philippart and C.J.M. Holtrop. G. 1994. Mesocosms and ecosystem modeling. Vie et Milieu 44:29–37.

    Google Scholar 

  • Brockmann, U. 1990. Pelagic mesocosms: II. Process studies. Pages LalliC.M. Enclosed Experimental Marine Ecosystems: A Review and Recommendations p. 81–108 Springer-Verlag, NY.

    Google Scholar 

  • Carpenter, S.R. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:667–680.

    Google Scholar 

  • Chen, C.-C. 1998. Wall effects in estuarine mesocosms: Scaling experiments and simulation models. PhD dissertation. University of Maryland, College Park, MD.

    Google Scholar 

  • Chen, C.-C. and W.M. Kemp. 2004. Periphyton communities in experimental marine ecosystems: Scaling the effects of removal from container walls. Marine Ecology Progress Series. 271:27–41.

    Article  Google Scholar 

  • Chen, C.-C., Petersen and J.E. Kemp. W.M. 1997. Spatial and temporal scaling of periphyton growth on walls of estuarine mesocosms. Marine Ecology-Progress Series 155:1–15.

    Article  Google Scholar 

  • Crowder, M.J. and Hand. D.J. 1990. Analysis of Repeated Measures. Chapman and Hall, London.

    Google Scholar 

  • Crowley, P.H. 1978. Effective size and the persistence of ecosystems. Oecologia 35:185–195.

    Article  Google Scholar 

  • Doering, P.H., Oviatt, C.A. Nowicki, B.L. Klos and E.G. Reed. L.W. 1995. Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Marine Ecology-Progress Series 124:271–287.

    Article  CAS  Google Scholar 

  • Duarte, C.M., Masó and M. Merino. M. 1992. The relationship between mesoscale phytoplankton heterogeneity and hydrographic variability. Deep-Sea Research 39:45–54.

    Article  Google Scholar 

  • Estrada, M., Alcaraz and M. Marrasé. C. 1987. Effect of reversed light gradients on the phytoplankton composition in marine microcosms. Investigación Pesquera 51:443–458.

    Google Scholar 

  • Gause, G.F. 1934. The Struggle for Existence. Williams and Wilkins, Baltimore, MD.

    Book  Google Scholar 

  • Gervais, F., Hintze and T. Behrendt. H. 1999. An incubator for the simulation of a fluctuating light climate in studies of planktonic primary productivity. International Review of Hydrobiology 84:49–60.

    Google Scholar 

  • Hastings, A. 1990. Spatial heterogeneity and ecological models. Ecology 71:426–428.

    Article  Google Scholar 

  • Have, A. 1990. Microslides as microcosms for the study of ciliate communities. Transactions of the American Microscopical Society 109:129–140.

    Article  Google Scholar 

  • Hill, J. and Wiegert. R.G. 1980. Microcosms in ecological modeling. Pages Giesy, Jr.J.P. Microcosms in Ecological Research. National Technical Information Service, Springfield, VA.138–163

    Google Scholar 

  • Huffaker, C.B. 1958. Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia 27:343–383.

    Google Scholar 

  • Kemp, W.M., Lewis, M.R. Cunningham, J.J. Stevenson and J.C. Boynton. W.R. 1980. Microcosms, macrophytes, and hierarchies: Environmental research in the Chesapeake Bay. Pages Giesy, Jr.J.P. Microcosms in Ecological Research. National Technical Information Service, Springfield, VA.911–936

    Google Scholar 

  • King, D.L. 1980. Some cautions in applying results from aquatic microcosms. Pages Giesy, Jr.J.P. Microcosms in Ecological Research. National Technical Information Service, Springfield, VA.164–191

    Google Scholar 

  • Lawton, J.H. 1995. Ecological experiments with model systems. Science 269:328–331.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M.R., Cullen and J.J. Platt. T. 1984. Relationships between vertical mixing and photoadaptation of phytoplankton: Similarity criteria. Marine Ecology-Progress Series 15:141–149.

    Article  Google Scholar 

  • Luckinbill, L.S. 1973. Coexistence in laboratory populations of Paramecium aurelia. and its predator Didinium nasutum Ecology 54:1320–1327.

    Article  Google Scholar 

  • Luckinbill, L.S. 1974. The effects of space and enrichment on a predator-prey system. Ecology 55:1142–1147.

    Article  Google Scholar 

  • Margalef, R. 1967. Laboratory analogues of estuarine plankton systems. Pages LauffG. Estuaries. American Association for the Advancement of Science, Washington D.C. 515–521

    Google Scholar 

  • Naeem, S. and Li. S. 1998. Consumer species richness and autotrophic biomass. Ecology 79:2603–2615.

    Article  Google Scholar 

  • Nixon, S.W., Alonso, D. Pilson and M.E.Q. Buckley. B.A. 1980. Turbulent mixing in aquatic mesocosms. Pages Giesy, Jr.J.P. Microcosms in Ecological Research. National Technical Information Service, Springfield, VA.818–849

    Google Scholar 

  • Nixon, S.W., Oviatt, C.A. Kremer and J.N. Perez. K. 1979. The use of numerical models and laboratory microcosms in estuarine ecosystem analysis – simulations of a winter phytoplankton bloom. Pages DameR.F. Marsh-Estuarine Systems Simulation. University of South Carolina Press, Columbia. SC. 165–188

    Google Scholar 

  • Pandey, G., Lovejoy and S. Schertzer. D. 1998. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. Journal of Hydrology 208:62–81.

    Article  Google Scholar 

  • Parsons, T.R. 1990. The use of mathematical models in conjunction with mesocosm ecosystem research. LalliC.M. Enclosed Experimental Marine Ecosystems: A Review and Recommendations p. 197–210. Springer-Verlag, NY.

    Google Scholar 

  • Peeters, J.C.H., Arts, F. Escaravage, V. Haas, H.A. de Jong, J.E.A. van Loon, R. Moest and B. van der Put. A. 1993. Studies on light climate, mixing and reproducibility of ecosystem variables in mesocosms: Consequences for the design. Pages Peeters, J.C.H. Joordens, J.C.A. Smaal and A.C. Nienhuis (eds.). P.H. The Impact of Marine Eutrophication on Phytoplankton and Benthic Suspension Feeders: Results of a Mesocosm Pilot Study. Middelburg, Netherlands.7–23Report No. DGW-93.039, NIOO-CEMO-654

    Google Scholar 

  • Petersen, J.E., Chen and C.-C. Kemp. W.M. 1997. Scaling aquatic primary productivity: Experiments under nutrient- and light-limited conditions. Ecology 78:2326–2338.

    Article  Google Scholar 

  • Petersen, J.E., Cornwell and J.C. Kemp. W.M. 1999. Implicit scaling in the design of experimental aquatic ecosystems. Oikos 85:3–18.

    Article  Google Scholar 

  • Petersen, J.E. and Englund. G. 2005. Dimensional approaches to designing better experimental ecosystems: A practitioners guide with examples. Oecologia 145:216–224.

    Article  PubMed  Google Scholar 

  • Petersen, J.E. and Hastings. A. 2001. Dimensional approaches to scaling experimental ecosystems: Designing mousetraps to catch elephants. American Naturalist 157:324–333.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, J.E., Kemp, W.M. Bartleson, R. Boynton, W.R. Chen, C.-C. Cornwell, J.C. Gardner, R.H. Hinkle, D.C. Houde, E.D. Malone, T.C. Mowitt, W.P. Murray, L. Sanford, L.P. Stevenson, J.C. Sundberg and K.L. Suttles. S.E. 2003. Multiscale experiments in coastal ecology: Improving realism and advancing theory. BioScience 53:1181–1197.

    Article  Google Scholar 

  • Platt, T. and Denman. K.L. 1975. Spectral analysis in ecology. Annual Review of Ecology and Systematics 6:189–210.

    Article  Google Scholar 

  • Sanford, L.P. 1997. Turbulent mixing in experimental ecosystem studies. Marine Ecology-Progress Series 161:265–293.

    Article  CAS  Google Scholar 

  • Schindler, D.W. 1998. Replication versus realism: The need for ecosystemscale experiments. Ecosystems 1:323–334.

    Article  Google Scholar 

  • Sheldon, R.W., Prakash and A. Sutcliffe Jr, . W.H. 1972. The size distribution of particles in the ocean. Limnology and Oceanography 17:327–340.

    Article  Google Scholar 

  • Tilman, D. 1989. Ecological experimentation: Strengths and conceptual problems. Pages Likens (ed.).G.E. Long-Term Studies in Ecology. Springer-Verlag, NY. 136–157

    Google Scholar 

  • Turpin, D.H. and Harrison. P.J. 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. Journal of Experimental Marine Biology and Ecology 39:151–166.

    Article  CAS  Google Scholar 

  • Vallino, J.J. 2000. Improving marine ecosystem models: Use of data assimilation and mesocosm experiments. Journal of Marine Research 58:117–164.

    Article  Google Scholar 

  • Zelenke ,J. and C.J., Madden. 1996. Simulation model of biogeochemical processes in marsh mesocosms Report to U.S. EPA, Annapolis, MD.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Petersen, J., Kemp, W., Kennedy, V., Dennison, W., Kangas, P. (2009). Tools for Design and Analysis of Experiments . In: Petersen, J., Kennedy, V., Dennison, W., Kemp, W. (eds) Enclosed Experimental Ecosystems and Scale. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76767-3_3

Download citation

Publish with us

Policies and ethics