Skip to main content

Reelin and Pancreatic Cancer

  • Chapter
Reelin Glycoprotein
  • 691 Accesses

Classically, the RELN gene has been known for its role in neuronal migration and positioning during central nervous system development. Absence of RELN expression results in the characteristic reeler phenotype in rodents, marked by severe defects in cortical layer formation and an uncoordinated, unsteady gait. In humans, loss of reelin expression causes a type of lissencephaly with severe cortical and cerebellar malformation. RELN is also expressed in peripheral tissues, including the liver, kidney, adrenal glands, and pancreas, suggesting an additional role for reelin in development and possibly in structural maintenance of these organs (Smalheiser et al., 2000). Recent findings indicate that RELN is expressed in the normal duct cells of the adult pancreas, and that RELN expression is frequently lost in pancreatic ductal adenocarcinomas and in precursor neoplasms in association with epigenetic silencing (Sato et al., 2006). In vitro studies suggest that loss of RELN contributes to the ability of pancreatic cancer cells to migrate and invade surrounding tissues. These findings support the notion that the effect of reelin pathway status on cell migration may depend on the cell type affected, perhaps depending on the downstream effects of reelin-mediated signaling on the cell’s cytoskeleton. for example, reelin loss stimulates migration in some cell types (Gong et al., 2007), even though the phenotype of RELN gene inactivation in the brain is a failure of migration (Kim et al., 2002; Trommsdorff et al., 1999). Although epigenetic mechanisms appear to be responsible for RELN silencing in pancreatic neoplasms, the mechanism directing this epigenetic silencing of RELN expression is uncertain (Sato et al., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466-1469.

    Article  CAS  PubMed  Google Scholar 

  • Bachman, K. E. P. B., Rhee, I., Rajagopalan, H., Herman, J. G., Baylin, S. B., Kinzler, K. W., and Vogelstein, B. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene Cancer Cell 3:89-95.

    Article  CAS  PubMed  Google Scholar 

  • Baylin, S. B., and Ohm, J. E. (2006). Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer 6:107-116.

    Article  CAS  Google Scholar 

  • Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H., and Whitelaw, E. (2006). Dynamic repro-gramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2:e49.

    Article  CAS  PubMed  Google Scholar 

  • Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., and Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2:e26.

    Article  PubMed  CAS  Google Scholar 

  • Cha, T. L., Zhou, B. P., Xia, W., Wu, Y., Yang, C. C., Chen, C. T., Ping, B., Otte, A. P., and Hung, M. C. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306-310.

    Article  CAS  PubMed  Google Scholar 

  • Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Coco, F. L., Kouzarides, T., Nervi, C., Minucci, S., and Pelicci, P. G. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079-1082.

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy, D. C., Weidman, J. R., Waterland, R. A., and Jirtle, R. L. (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114:567-572.

    Article  CAS  PubMed  Google Scholar 

  • Dong, E., Guidotti, A., Grayson, D. R., and Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci. USA 104:4676-4681.

    Article  CAS  PubMed  Google Scholar 

  • Egger, G., Liang, G., Aparicio, A., and Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457-463.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4:145-154.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi, S. H., Earle, J., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., Shi, L., and Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell. Mol. Neurobiol. 22:25-33.

    Article  PubMed  Google Scholar 

  • Feinberg, A. P., Ohlsson, R., and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7:21-33.

    CAS  Google Scholar 

  • Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C., and Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102:10604-10609.

    Article  CAS  PubMed  Google Scholar 

  • Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., and Clark, S. J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genet. 38:540-549.

    Article  CAS  PubMed  Google Scholar 

  • Gong, C., Wang, T. W., Huang, H. S., and Parent, J. M. (2007). Reelin regulates neuronal progeni-tor migration in intact and epileptic hippocampus. J. Neurosci. 27:1803-1811. http://www.fda.gov/ohrms/dockets/98fr/84n-0102-lst0101-01.pdf.

    Google Scholar 

  • Huusko, P., Ponciano-Jackson, D., Wolf, M., Kiefer, J. A., Azorsa, D. O., Tuzmen, S., Weaver, D., Robbins, C., Moses, T., Allinen, M., Hautaniemi, S., Chen, Y., Elkahloun, A., Basik, M., Bova, G. S., Bubendorf, L., Lugli, A., Sauter, G., Schleutker, J., Ozcelik, H., Elowe, S., Pawson, T., Trent, J. M., Carpten, J. D., Kallioniemi, O. P., and Mousses, S. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genet. 36:979-983.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, K., Oshimura, M., and Nakao, M. (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23:733-742.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Ito, M., Elliott, W. M., Cosio, B., Caramori, G., Kon, O. M., Barczyk, A., Hayashi, S., Adcock, I. M., Hogg, J. C., and Barnes, P. J. (2005). Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352:1967-1976.

    Article  CAS  PubMed  Google Scholar 

  • Keshvara, L., Magdaleno, S., Benhayon, D., and Curran, T. (2002). Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J. Neurosci. 22:4869-4877.

    CAS  PubMed  Google Scholar 

  • Kim, H. M., Qu, T., Kriho, V., Lacor, P., Smalheiser, N., Pappas, G. D., Guidotti, A., Costa, E., and Sugaya, K. (2002). Reelin function in neural stem cell biology. Proc. Natl. Acad. Sci. USA 99:4020-4025.

    Article  CAS  PubMed  Google Scholar 

  • Lowenfels, A. B., Maisonneuve, P., DiMagno, E. P., Elitsur, Y., Gates, L. K., Jr., Perrault, J., and Whitcomb, D. C. (1997). Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J.Natl. Cancer Inst. 89:442-446.

    Article  CAS  Google Scholar 

  • Marks, P. A., and Jiang, X. (2005). Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4:549-551.

    CAS  PubMed  Google Scholar 

  • Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B. K., and Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflam-mation-mediated brain and behavioral pathology. J. Neurosci. 26:4752-4762.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, C. P., Chen, Y., Kundakovic, M., Costa, E., and Grayson, D. R. (2005). Histone deacety-lase inhibitors decrease reelin promoter methylation in vitro. J. Neurochem. 93:483-492.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23:314-318.

    Article  CAS  PubMed  Google Scholar 

  • Ohm, J., McGarvey, K., Yu, X., Cheng, L., Schuebel, K., Cope, L., Mohammad, H., Chen, W., Daniel, V., Yu, W., Berman, D., Jenuwein, T., Pruitt, K., Sharkis, S., Watkins, D. N., Herman, J., and Baylin, S. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39:237-242.

    Article  CAS  PubMed  Google Scholar 

  • Oki, Y., Aoki, E., and Issa, J.P. (2007). Decitabine—Bedside to bench. Crit. Rev. Oncol. Hematol. 61:140-152.

    Article  PubMed  Google Scholar 

  • Perrone, G., Vincenzi, B., Zagami, M., Santini, D., Panteri, R., Flammia, G., Verzi, A., Lepanto, D., Morini, S., Russo, A., Bazan, V., Tomasino, R. M., Morello, V., Tonini, G., and Rabitti, C. (2007). Reelin expression in human prostate cancer: a marker of tumor aggressiveness based on correlation with grade. Mod. Pathol. 20:344-351.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt, K., Zinn, R. L., Ohm, J. E., McGarvey, K. M., Kang, S. H., Watkins, D. N., Herman, J. G., and Baylin, S. B. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2:e40.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Fukushima, N., Chang, R., Matsubayashi, H., and Goggins, M. (2006). Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548-565.

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. Z. S. C., Harrison, J., Melki, J. R., and Clark, S. J. (2002). Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21:1048-1061.

    Article  CAS  PubMed  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Lu, J., Yang, C., Wang, X., Cheng, L., Hu, G., Sun, Y., Zhang, X., Wu, M., and Liu, Z. (2002). CASK and its target gene Reelin were co-upregulated in human esophageal carcinoma. Cancer Lett. 179:71-77.

    Article  CAS  PubMed  Google Scholar 

  • Waterland, R. A., and Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23:5293-5300.

    Article  CAS  PubMed  Google Scholar 

  • West, A. G., and van Attikum, H. (2006). Chromatin at the crossroads. Meeting on signalling to chromatin epigenetics. EMBO Rep. 7:1206-1210.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Walter, K., Goggins, M. (2008). Reelin and Pancreatic Cancer. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_28

Download citation

Publish with us

Policies and ethics