Skip to main content

Alzheimer’s Disease and Reelin

  • Chapter
Reelin Glycoprotein

Alzheimer’s disease (AD) is the most common cause of dementia among elderly people and is characterized by loss of memory and cognitive functions. The pathological hallmarks include extensive synaptic and neuronal loss, astrogliosis, and accumulation of fibrillar deposits. The amyloid plaques are extracellular deposits mainly composed of a small insoluble protein called β-amyloid protein or Aβ that is derived from the β-amyloid precursor protein (APP) (Masters et al., 1985). The neurofibrillary tangles are composed of intracellular paired helical filaments containing an abnormally phosphorylated form of the tau protein (Grundke-Iqbal et al., 1986). Specific genetic factors are also linked closely to AD. Thus, despite the occurrence of missense mutations in APP, the most common mutations in AD to date are in presenilin (PS1 and PS2) genes, membrane proteins which play a critical role in the γ-secretase processing of APP (Selkoe, 2001). Whereas these mutations are quite infrequent causes of AD, the major known genetic risk factor for the disorder in the typical late-onset period is the ε4 allele of apolipoprotein E (ApoE) (Strittmatter et al., 1993).

The purposes of this chapter are to review the links between Reelin and elements of its signaling pathway with the main hallmarks of AD pathology and summarize our recent findings, including the first evidence of altered Reelin expression in the AD brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.

    PubMed  Google Scholar 

  • Arendt, T. (2003). Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog. Neurobiol. 71:83-248.

    Article  PubMed  Google Scholar 

  • Baloyannis, S. J. (2005). Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer’s disease: a Golgi and electron microscope study. Int. J. Neurosci. 115:965-980.

    Article  PubMed  Google Scholar 

  • Bar, I., and Goffinet, A. M. (1999). Developmental neurobiology. Decoding the reelin signal. Nature 399:645-646.

    Article  PubMed  Google Scholar 

  • Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336:417-424.

    Article  PubMed  Google Scholar 

  • Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.

    Article  PubMed  Google Scholar 

  • Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.

    Article  PubMed  Google Scholar 

  • Botella-López, A., Burgaya, F., Gavín, R., García-Ayllón, M. S., Gómez-Tortosa, E., Peña-Casanova, J., Ureña, J. M., Del Río, J. A., Blesa, R., Soriano, E., and Sáez-Valero, J. (2006). Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5573-5578.

    Article  PubMed  Google Scholar 

  • Bothwell, M., and Giniger, E. (2000). Alzheimer’s disease: neurodevelopment converges with neurodegeneration. Cell 102:271-273.

    Article  PubMed  Google Scholar 

  • Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23:187-192.

    PubMed  Google Scholar 

  • Cooper, J. A., and Howell, B. W. (1999). Lipoprotein receptors: signaling functions in the brain? Cell 97:671-674.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.

    Article  PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H. (2005). Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10:251-257.

    Article  PubMed  Google Scholar 

  • Grilli, M., Ferrari Toninelli, G., Uberti, D., Spano, P., and Memo, M. (2003). Alzheimer’s disease linking neurodegeneration with neurodevelopment. Funct. Neurol. 18:145-148.

    PubMed  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83:4913-4917.

    Article  PubMed  Google Scholar 

  • Hartmann, D., De Strooper, B., and Saftig, P. (1999). Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9:719-727.

    Article  PubMed  Google Scholar 

  • Herz, J., and Beffert, U. (2000). Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nature Rev. Neurosci. 1:51-58.

    Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.

    Article  PubMed  Google Scholar 

  • Hoareau, C., Borrell, V., Soriano, E., Krebs, M. O., Prochiantz, A., and Allinquant, B. (2008). APP cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neu-rons. Neurobiol. Aging 29:542-553.

    Article  PubMed  Google Scholar 

  • Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006). Dab1 and reelin effects on APP and ApoEr2 trafficking and processing. J. Biol. Chem. 281:35176-35185.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell. Biol. 19:5179-5188.

    PubMed  Google Scholar 

  • Ignatova, N., Sindic, C. J., and Goffinet, A. M. (2004). Characterization of the various forms of the reelin protein in the cerebrospinal fluid of normal subjects and in neurological diseases. Neurobiol. Dis. 15:326-330.

    Article  PubMed  Google Scholar 

  • Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157-172.

    Article  PubMed  Google Scholar 

  • Ishiguro, K., Shiratsuchi, A., Sato, S., Omori, A., Arioka, M., Kobayashi, S., Uchida, T., and Imahori, K. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I gener-ating several epitopes of paired helical filaments. FEBS Lett. 325:167-172.

    Article  PubMed  Google Scholar 

  • Kilb, W., Hartmann, D., Saftig, P., and Luhmann, H. J. (2004). Altered morphological and elec-trophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic presenilin-1 knockout mice. Eur. J. Neurosci. 20:2749-2756.

    Article  PubMed  Google Scholar 

  • Koch, S., Strasser, V., Hauser, C., Fasching, D., Brandes, C., Bajari, T. M., Schneider, W. J., and Nimpf, J. (2002). A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits reelin signaling. EMBO J. 21:5996-6004.

    Article  PubMed  Google Scholar 

  • Lugli, G., Krueger, J. M., Davis, J. M., Persico, A. M., Keller, F., and Smalheiser, N. R. (2003). Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochem. 4:9.

    Article  PubMed  Google Scholar 

  • Mandelkow, E. M., Drewes, G., Biernat, J., Gustke, N., Van Lint, J., Vandenheede, J. R., and Mandelkow, E. (1992). Glycogen synthase kinase-3 and the Alzheimer-like state of microtu-bule-associated protein tau. FEBS Lett. 314:315-321.

    Article  PubMed  Google Scholar 

  • Martínez-Cerdeño, V., Galazo, M. J., Cavada, C., and Clasca, F. (2002). Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cereb. Cortex 12:1298-1311.

    Article  PubMed  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82:4245-4249.

    Article  PubMed  Google Scholar 

  • Miettinen, R., Riedel, A., Kalesnykas, G., Kettunen, H. P., Puolivali, J., Soininen, H., and Arendt, T. (2005). Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J. Chem. Neuroanat. 30:105-118.

    Article  PubMed  Google Scholar 

  • Motoi, Y., Itaya, M., Mori, H., Mizuno, Y., Iwasaki, T., Hattori, H., Haga, S., and Ikeda, K. (2004). Apolipoprotein E receptor 2 is involved in neuritic plaque formation in APP sw mice. Neurosci. Lett. 368:144-147.

    Article  PubMed  Google Scholar 

  • Ohkubo, N., Lee, Y. D., Morishima, A., Terashima, T., Kikkawa, S., Tohyama, M., Sakanaka, M., Tanaka, J., Maeda, N., Vitek, M. P., and Mitsuda, N. (2003). Apolipoprotein E and reelin lig-ands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J. 17:295-297.

    PubMed  Google Scholar 

  • Parisiadou, L., and Efthimiopoulos, S. (2007). Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol. Aging 28:377-388.

    Article  PubMed  Google Scholar 

  • Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95:3221-3226.

    Article  PubMed  Google Scholar 

  • Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafre, S. A., D’Arcangelo, G., Farace, M. G., and Keller, F. (2002). Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277:303-309.

    Article  PubMed  Google Scholar 

  • Quattrocchi, C. C., Huang, C., Niu, S., Sheldon, M., Benhayon, D., Cartwright, J., Jr, Mosier, D. R., Keller, F., and D’Arcangelo, G. (2004). Retraction of ‘Quattrocchi et al. Science 2003; 301:649-653’. Science 303:1974.

    Google Scholar 

  • Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.

    Article  PubMed  Google Scholar 

  • Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. 106:291-302.

    Article  PubMed  Google Scholar 

  • Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482:294-308.

    Article  PubMed  Google Scholar 

  • Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc. Natl. Acad. Sci. USA 97:3550-3555.

    Article  PubMed  Google Scholar 

  • Sáez-Valero, J., Costell, M., Sjögren, M., Andreasen, N., Blennnow, K., and Luque, J. M. (2003). Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s dis-ease. J. Neurosci. Res. 72:132-136.

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81:741-766.

    PubMed  Google Scholar 

  • Senzaki, K., Ogawa, M., and Yagi, T. (1999). Proteins of the CNR family are multiple receptors for reelin. Cell 99:635-647.

    Article  PubMed  Google Scholar 

  • Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.

    Article  PubMed  Google Scholar 

  • Stockinger, W., Brandes, C., Fasching, D., Hermann, M., Gotthardt, M., Herz, J., Schneider, W. J., and Nimpf, J. (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275:25625-25632.

    Article  PubMed  Google Scholar 

  • Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:19771981.

    Google Scholar 

  • Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.

    Article  PubMed  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    Article  PubMed  Google Scholar 

  • Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329-1334.

    Article  PubMed  Google Scholar 

  • Verhey, K. J., Meyer, D., Deehan, R., Bleni, J., Schnapp, B. J., Rapoport, T. A., and Margolis, B. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling mole-cules. J. Cell Biol. 152:959-970.

    Article  PubMed  Google Scholar 

  • Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.

    Article  PubMed  Google Scholar 

  • Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Tremp, G., Pradier, L., Beyreuther, K., and Bayer, T. A. (2001). Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 316:145-148.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Botella-López, A., Sáez-Valero, J. (2008). Alzheimer’s Disease and Reelin. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_26

Download citation

Publish with us

Policies and ethics