Skip to main content

Reelin and Thyroid Hormone

  • Chapter
  • 676 Accesses

Thyroid hormone [3,5,3′-triiodothyronine (T3) and thyroxine (T4)] is essential for proper brain development. In humans, the lack of adequate T3 levels during the perinatal period leads to cretinism, a syndrome associated with mental retardation and neurological deficits, such as ataxia, spasticity, and deafness (for review, see Legrand, 1984; Dussault and Ruel, 1987; Braverman and Utiger, 2000; Bernal, 2005a). These alterations are due to misregulation of the gene expression controlled by T3 through its interaction with nuclear receptors, which act as ligand-modulated transcription factors (Muñoz and Bernal, 1997; Forrest and Vennström, 2000; Yen et al., 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., Suzuki, T., Unno, M., Tokui, T., and Ito, S. (2002). Thyroid hormone transporters: recent advances. Trends Endocrinol. Metab. 13:215-220.

    Google Scholar 

  • Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.

    PubMed  Google Scholar 

  • Álvarez-Dolado, M., Iglesias, T., Rodríguez-Peña, A., Bernal, J., and Muñoz, A. (1994). Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Mol. Brain Res. 27:249-257.

    Article  PubMed  Google Scholar 

  • Álvarez-Dolado, M., González-Sancho, J., Bernal, J., and Muñoz, A. (1998). Developmental expres-sion of tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309-322.

    Article  PubMed  Google Scholar 

  • Álvarez-Dolado, M., Ruiz, M., Del Río, J. A., Alcántara, S., Burgaya, F., Sheldon, M., Nakajima, K., Bernal, J., Howell, B. W., Curran, T., Soriano, E., and Muñoz, A. (1999). Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19:6979-6993.

    PubMed  Google Scholar 

  • Álvarez-Dolado, M., Cuadrado, A., Navarro-Yubero, C., Sonderegger, P., Furley, A. J., Bernal, J., and Munoz, A. (2000). Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol. Cell. Neurosci. 4:499-514.

    Article  Google Scholar 

  • Álvarez-Dolado, M., Figueroa, A., Kozlov, S., Sonderegger, P., Furley, A. J., and Munoz, A. (2001). Thyroid hormone regulates TAG-1 expression in the developing rat brain. Eur. J. Neurosci. 8:1209-1218.

    Article  Google Scholar 

  • Aniello, F., Couchie, D., Bridoux, A. M., Gripois, D., and Nunez, J. (1991). Splicing of juvenile and adult tau m-RNA variants is regulated by thyroid hormone. Proc. Natl. Acad. Sci. USA88:4035-4039.

    Article  PubMed  Google Scholar 

  • Berbel, P., Guadaño-Ferraz, A., Martínez, M., Quiles, J., Balboa, R., and Innocenti, G. (1993). Organization of auditory callosal connections in hypothyroid rats. Eur. J. Neurosci. 5:1465-1478.

    Article  PubMed  Google Scholar 

  • Berbel, P., Ausó, E., García-Velasco, J. V., Molina, M. L., and Camacho, M. (2001). Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neurosci. 107:383-394.

    Article  Google Scholar 

  • Bernal, J. (2002). Action of thyroid hormone in brain. J. Endocrinol. Invest. 25:268-288.

    PubMed  Google Scholar 

  • Bernal, J. (2005a). Thyroid hormones and brain development. Vitam. Horm. 71: 95-122.

    Article  PubMed  Google Scholar 

  • Bernal, J. (2005b). The significance of thyroid hormone transporters in the brain. Endocrinology 146:1698-1700.

    Article  PubMed  Google Scholar 

  • Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., and Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23:38-89.

    Article  PubMed  Google Scholar 

  • Billon, N., Jolicoeur, C., Tokumoto, Y., Vennstrom, B., and Raff, M. (2002). Normal timing of oli-godendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J. 21:6452-6460.

    Article  PubMed  Google Scholar 

  • Braverman, L. E., and Utiger, R. D. (2000). Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text, 8th ed. Lippincott Williams and Wilkins, Philadelphia.

    Google Scholar 

  • Clos, J., and Legrand, C. H. (1990). An interaction between thyroid hormone and nerve growth factor promotes the development of hippocampus, olfactory bulbs and cerebellum: a compara-tive biochemical study of normal and hypothyroid rats. Growth Factor 3:205-220.

    Article  Google Scholar 

  • deLong, G. R. (1990). The effect of iodine deficiency on neuromuscular development. IDD Newsletter 6:1-12.

    Google Scholar 

  • Derer, P. (1985). Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosci. Lett. 54:1-6.

    Article  PubMed  Google Scholar 

  • Dickson, P. W., Aldred, A. R., Menting, J. G. T., Marley, P. D., Sawyer, W. H., and Schreiber, G. (1987). Thyroxine transport in choroid plexus. J. Biol. Chem. 262:13907-13915.

    PubMed  Google Scholar 

  • Dussault, J. H., and Ruel, J. (1987). Thyroid hormones and brain development. Annu. Rev. Physiol. 49:321-334.

    Article  PubMed  Google Scholar 

  • Ercan-Fang, S., Schwartz, H. L., and Oppenheimer, J. H. (1996). Isoform specific 3,5,3'-triiodothyronine receptor binding capacity and messenger ribonucleic acid content in rat adenohypophysis: effect of thyroidal state and comparison with extrapituitary tissues. Endocrinology 137:3228-3233.

    Article  PubMed  Google Scholar 

  • Forrest, D., and Vennström, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid 1:41-52.

    Article  Google Scholar 

  • Forrest, D., Sjoberg, M., and Vennstrom, B. (1990). Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J. 9:1519-1528.

    PubMed  Google Scholar 

  • Gauthier, K., Plateroti, M., Harvey, C. B., Williams, G. R., Weiss, R. E., Refeto,V.S., Willott, J. F., Sundin, V., Roux, J. P., Malaval, L., Hara, M., Samarut, J., and Chassande, O. (2001). Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol. Cell. Biol. 21: 4748-4760.

    Article  PubMed  Google Scholar 

  • Goffinet, A. M. (1980). The cerebral cortex of the reeler embryo (an electron microscopic analy-sis). Anat. Embryol. 159:199-210.

    Article  PubMed  Google Scholar 

  • Iglesias, T., Caubín, J., Stunnenberg, H. G., Zaballos, A., Bernal, J., and Muñoz, A. (1996). Thyroid hormone-dependent transcriptional repression of neuronal cell adhesion molecule during brain maturation. EMBO J. 15:4307-4316.

    PubMed  Google Scholar 

  • Lauder, J. M. (1979). Granule cell migration in the developing rat cerebellum. Influence of neo-natal hypo- and hyper-thyroidism. Dev. Biol. 70:105-115.

    Article  PubMed  Google Scholar 

  • Lazar, M. A. (1993). Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184-193.

    PubMed  Google Scholar 

  • Legrand, J. (1984). Effects of thyroid hormones on central nervous system. In: Yanai, J. (ed.), Neurobehavioural Teratology. Elsevier/North-Holland, Amsterdam, pp. 331-363.

    Google Scholar 

  • Lima, F. R., Goncalves, N., Gomes, F. C., de Freitas, M. S., and Moura Neto, V. (1998). Thyroid hormone action on astroglial cells from distinct brain regions during development. Int. J. Dev. Neurosci. 16:19-27.

    Article  PubMed  Google Scholar 

  • Lima, F. R., Gervais, A., Colin, C., Izembart, M., Neto, V. M., and Mallat, M. (2001). Regulation of microglial development: a novel role for thyroid hormone. J. Neurosci. 21:2028-2038.

    PubMed  Google Scholar 

  • Lu, E., and Brown, W. (1977). The developing caudate nucleus in the euthyroid and hypothyroid rat. J. Comp. Neurol. 171:261-284.

    Article  PubMed  Google Scholar 

  • Lucio, R. A., García, J. V., Cerezo, J. R., Pacheco, P., Innocenti, G. M., and Berbel, P. (1997). The development of auditory callosal connections in normal and hypothyroid rats. Cereb. Cortex 7:303-316.

    Article  PubMed  Google Scholar 

  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M. (1995). The nuclear receptor super-family: the second decade. Cell 83:835-839.

    Article  PubMed  Google Scholar 

  • Manzano, J., Morte, B., Scanlan, T. S., and Bernal, J. (2003). Differential effects of triiodothyro-nine and the thyroid hormone receptor β-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 144:5480-5487.

    Article  PubMed  Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physi-ological and biochemical studies of the cerebellum from reeler mutant mouse. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 281:1-28.

    Article  Google Scholar 

  • Martínez-Galán, J., Pedraza, P., Santacana, M., Escobar del Rey, F., Morreale de Escobar, G., and Ruiz-Marcos, A. (1997). Early effects of iodine deficiency on radial glial cells of the hippoc-ampus of the rat fetus. A model of neurological cretinism. J. Clin. Invest. 99:2701-2709.

    Article  PubMed  Google Scholar 

  • Miyata, T., Nakajima, K., Aruga, J., Mikoshiba, K., and Ogawa, M. (1997). Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 15:3599-3609.

    Google Scholar 

  • Moore, J. M., and Guy, R. K. (2005). Coregulator interactions with the thyroid hormone receptor. Mol. Cell. Proteomics 4:475-482.

    Article  PubMed  Google Scholar 

  • Muñoz, A., and Bernal, J. (1997). Biological activities of thyroid hormone receptors. Eur. J. Endocrinol. 137:433-445.

    Article  PubMed  Google Scholar 

  • Neveu, I., and Arenas, E. (1996). Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J. Cell Biol. 133:631-646.

    Article  PubMed  Google Scholar 

  • Nishihara, E., O’Malley, B. W., and Xu, J. (2004). Nuclear receptor co-regulators are new players in nervous system development and function. Mol. Neurobiol. 3:307-325.

    Article  Google Scholar 

  • Oppenheimer, J. H., and Schwartz, H. L. (1997). Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18:462-475.

    Article  PubMed  Google Scholar 

  • Patel, A.J., Rabie, A., Lewis, P., and Balazs, R. (1976). Effects of thyroid deficiency on postnatal cell formation in the rat brain. A biochemical investigation. Brain Res. 104:33-48.

    Article  PubMed  Google Scholar 

  • Rice, D.S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organiza-tion in the mammalian brain. Development 125:3719-3729.

    PubMed  Google Scholar 

  • Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibañez, C. F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21:305-315.

    Article  PubMed  Google Scholar 

  • Rodríguez-Peña, A. (1999). Oligodendrocyte development and thyroid hormone. J. Neurobiol. 40:497-512.

    Article  PubMed  Google Scholar 

  • Schiffmann, S. N., Bernier, B., and Goffinet, A. (1997). reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9: 1055-1071

    Article  PubMed  Google Scholar 

  • Verhoelst, C. H., Roelens, S. A., and Darras, V. M. (2005). Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organization. Brain Res. Bull. 67:196-202.

    Google Scholar 

  • Weiss, R. E., and Ramos, H. E. (2004). Thyroid hormone receptor subtypes and their interaction with steroid receptor coactivators. Vitam. Horm. 68:185-207.

    Article  PubMed  Google Scholar 

  • Yen, P. M., Ando, S., Feng, X., Liu, Y., Maruvada, P., and Xia, X. (2006). Thyroid hormone action at the cellular, genomic and target gene levels. Mol. Cell. Endocrinol. 246:121-127.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Álvarez-Dolado, M. (2008). Reelin and Thyroid Hormone. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_15

Download citation

Publish with us

Policies and ethics