Skip to main content

Neutral networks

  • Chapter
  • First Online:
Combinatorial Computational Biology of RNA

Abstract

In this chapter we study the structure of neutral networks as induced subgraphs of sequence space . Since exhaustive computation of sequence to structure maps using folding algorithms is at present time only feasible for sequences of length \({<}40\), we will study the structure of neutral networks using the language of random graphs . For data on sequence to structure maps into RNA secondary structures, obtained by computer folding algorithms, see [55, 56]. In [71] data on sequence to structure maps into RNA pseudoknot structures based on cross are being presented. The above papers allow to contrast the random graph model with biophysical folding maps. Our presentation is based on the papers [105, 102, 103, 106].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 55. NBS Applied Mathematics, Dover, NY 1964.

    Google Scholar 

  2. M. Ajtai, J. Komlós, and E. Szemerédi. Largest random component of a k-cube. Combinatorica, 2:1–7, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Bollobás, Y. Kohayakawa, and T. Luczak. The evolution of random subgraphs of the cube. Random Struct. Algorithms, 3:55–90, 1992.

    Article  MATH  Google Scholar 

  4. B. Bollobás, Y. Kohayakawa, and T. Luczak. On the evolution of random boolean functions. in: P. Frankl, Z. Füredi, G. Katona, D. Miklós (eds), Extremal Probls Finite Sets, 137–156, 1992.

    Google Scholar 

  5. C. Borgs, J.T. Chayes, H. Remco, G. Slade, and J. Spencer. Random subgraphs of finite graphs: III. the phase transition for the n-cube. Combinatorica, 26:359–410, 2006.

    Article  Google Scholar 

  6. J.D. Burtin. The probability of connectedness of a random subgraph of an n-dimensional cube. Probl Infom Transm, 13:147–152, 1977.

    MathSciNet  Google Scholar 

  7. V.L. Emerick and S.A. Woodson. Self-splicing of the tetrahymena pre-rrna is decreased by misfolding during transcription. Biochemistry, 32:14062–14067, 1993.

    Article  Google Scholar 

  8. P. Erdős and J. Spencer. The evolution of the n-cube. Comput. Math. Appl., 5:33–39, 1979.

    Article  MathSciNet  Google Scholar 

  9. C. Flamm, I.L. Hofacker, S. Maurer-Stroh, P.F. Stadler, and M. Zehl. Design of multistable RNA molecules. RNA, 7:254–265, 2001.

    Article  Google Scholar 

  10. J.R. Fresco, A. Adains, R. Ascione, D. Henley, and T. Lindahl. Tertiary structure in transfer ribonucleic acids. Cold Spring Harbor Symp. Quant. Biol., 31:527–539, 1966.

    Google Scholar 

  11. U. Goebel and C.V. Forst. RNA pathfinder–global properties of neutral networks. Zeitschrift fuer physikalische Chemie, 216, 2002.

    Google Scholar 

  12. W. Grüner, R. Giegerich, D. Strothmann, C.M. Reidys, J. Weber, I.L. Hofacker, P.F. Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive enumeration I. structures of neutral networks and shape space covering. Chem. Mon., 127:355–374, 1996.

    Article  Google Scholar 

  13. W. Grüner, R. Giegerich, D. Strothmann, C.M. Reidys, J. Weber, I.L. Hofacker, P.F. Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive enumeration II. structures of neutral networks and shape space covering. Chem. Mon., 127:375–389, 1996.

    Article  Google Scholar 

  14. L.H. Harper. Minimal numberings and isoperimetric problems on cubes. Theory of Graphs, International Symposium, Rome, 1966.

    Google Scholar 

  15. E.R. Hawkins, Chang S.H., and W.L. Mattice. Kinetics of the renaturation of yeast trnaleu3. Biopolymers, 16:1557–1566, 1977.

    Article  Google Scholar 

  16. F.W.D. Huang, L.Y.M. Li, and C.M. Reidys. Sequence-structure relations of pseudoknot RNA. BMC Bioinformatics, 10, Suppl 1, S39, 2009.

    Article  Google Scholar 

  17. M.V. Meshikov. Coincidence of critical points in percolation problems. Soviet Mathematics, Doklady, 33:856–859, 1986.

    Google Scholar 

  18. M. Molloy and B. Reed. The size of the giant component of a random graph with given degree sequence. Combin. Probab. Comput., 7:295–305, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. C.M. Reidys. Random induced subgraphs of generalized n-cubes. Adv. Appl. Math., 19:360–377, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. C.M. Reidys. Distance in random induced subgraphs of generalized n-cubes. Combinator. Probab. Comput., 11:599–605, 2002.

    MATH  MathSciNet  Google Scholar 

  21. C.M. Reidys. Local connectivity of neutral networks. Bull. Math. Biol., 71:265–290, 2008. in press.

    Article  MathSciNet  Google Scholar 

  22. C.M. Reidys. The largest component in random induced subgraphs of n-cubes. Discr. Math., 309, Issue 10:3113–3124, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.M. Reidys, P.F. Stadler, and P.K. Schuster. Generic properties of combinatory maps and neutral networks of rna secondary structures. Bull. Math. Biol., 59(2):339–397, 1997.

    Article  MATH  Google Scholar 

  24. E.A. Schultes and P.B. Bartels. One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds. Science, 289:448–452, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reidys .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reidys, C. (2011). Neutral networks. In: Combinatorial Computational Biology of RNA. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76731-4_7

Download citation

Publish with us

Policies and ethics