Skip to main content

Bayesian Model Selection in Factor Analytic Models

  • Chapter
Random Effect and Latent Variable Model Selection

Part of the book series: Lecture Notes in Statistics ((LNS,volume 192))

Abstract

Factor analytic models are widely used in social science applications to study latent traits, such as intelligence, creativity, stress, and depression, that cannot be accurately measured with a single variable. In recent years, there has been a rise in the popularity of factor models due to their flexibility in characterizing multivari-ate data. For example, latent factor regression models have been used as a dimensionality reduction tool for modeling of sparse covariance structures in genomic applications (West, 2003; Carvalho et al. 2008). In addition, structural equation models and other generalizations of factor analysis are widely useful in epidemi-ologic studies involving complex health outcomes and exposures (Sanchez et al., 2005). Improvements in Bayesian computation permit the routine implementation of latent factor models via Markov chain Monte Carlo (MCMC) algorithms, and a very broad class of models can be fitted easily using the freely available software package WinBUGS. The literature on methods for fitting and inferences in latent factor models is vast (for recent books, see Loehlin, 2004; Thompson, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H. (1987). Factor analysis and AIC. Psychometrika 52, 317–332

    Article  MathSciNet  MATH  Google Scholar 

  • Arminger, G. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 63, 271–300

    Article  Google Scholar 

  • Berger, J. and Pericchi, L. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association 91, 109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. and Pericchi, L. (2001). Objective Bayesian methods for model selection: introduction and comparison [with discussion]. In: Model Selection, P. Lahiri (ed.). Institute of Mathematical Statistics Lecture Notes, Monograph Series Volume 38, Beachwood Ohio, 135–207

    Chapter  Google Scholar 

  • Berger, J.O., Ghosh, J.K. and Mukhopadhyay, N. (2003). Approximation and consistency of Bayes factors as model dimension grows. Journal of Statistical Planning and Inference 112, 241–258

    Article  MathSciNet  MATH  Google Scholar 

  • Carvalho, C., Lucas, J., Wang, Q., Nevins, J. and West, M. (2008). High-dimensional sparse factor modelling: applications in gene expression genomics. Journal of the American Statistical Association, to appear

    Google Scholar 

  • Chib, S. (1995). Marginal likelihoods from the Gibbs output. Journal of the American Statistical Association 90, 1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • DiCiccio, T.J., Kass, R., Raftery, A. and Wasserman, L. (1997). Computing Bayes factors by combining simulations and asymptotic approximations. Journal of the American Statistical Association 92, 903–915

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E. and Dey, D.K. (1994). Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society B, 501–514

    MathSciNet  Google Scholar 

  • Gelfand, A.E., Sahu, S.K. and Carlin, B.P. (1995). Efficient parameterisations for normal linear mixed models. Biometrika 82, 479–488

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 3, 515–534

    MathSciNet  Google Scholar 

  • Gelman, A. and Meng, X.L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science 13, 163–185

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., van Dyk, D., Huang, Z. and Boscardin, W.J. (2007). Using redundant parameters to fit hierarchical models. Journal of Computational and Graphical Statistics, to appear

    Google Scholar 

  • Ghosh, J. and Dunson, D.B. (2007). Default priors and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, revision requested

    Google Scholar 

  • Green, P.J. (1995). Reversible jump Markov chain Monte Carlo and Bayesian model determination. Biometrika 82, 711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S.Y. and Song, X.Y. (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika 29, 23–40

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. and Wu, Y.N. (1999). Parameter expansion for data augmentation. Journal of the American Statistical Association 94, 1264–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Loehlin, J.C. (2004). Latent Variable Models: An Introduction to Factor, Path and Structural Equation Analysis. Lawrence Erlbaum Associates,

    Google Scholar 

  • Lopes, H.F. and West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica 14, 41–67

    MathSciNet  MATH  Google Scholar 

  • Meng, X.L. and Wong, W.H. (1996). Simulating ratios of normalising constants via a simple identity. Statistica Sinica 11, 552–586

    MathSciNet  Google Scholar 

  • Polasek, W. (1997). Factor analysis and outliers: a Bayesian approach. Discussion Paper, University of Basel

    Google Scholar 

  • Press, S.J. and Shigemasu, K. (1999). A note on choosing the number of factors. Communications in Statistics — Theory and Methods 28, 1653–1670

    Article  MathSciNet  MATH  Google Scholar 

  • Rowe, D.B. (1998). Correlated Bayesian factor analysis. Ph.D. Thesis, Department of Statistics, University of California, Riverside, CA

    Google Scholar 

  • Sanchez, B.N., Budtz-Jorgensen, E., Ryan, L.M. and Hu, H. (2005). Structural equation models: a review with applications to environmental epidemiology. Journal of the American Statistical Association 100, 1442–1455

    Article  MathSciNet  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Song, X.Y. and Lee, S.Y. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. British Journal of Mathematical & Statistical Psychology 54, 237–263

    Article  Google Scholar 

  • Thompson, B. (2004). Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications. APA Books

    Google Scholar 

  • West, M. (2003). Bayesian factor regression models in the “large p, small n” paradigm. In: Bayesian Statistics, Volume 7, J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith and M. West (eds). Oxford University Press, Oxford

    Google Scholar 

  • Zhang, N.L. and Kocka, T. (2004). Effective dimensions of hierarchical latent class models. Journal of Artificial Intelligence Research 21, 1–17

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyee Ghosh .

Editor information

Editors and Affiliations

Appendix: Full Conditional Distributions for the Gibbs Sampler

Appendix: Full Conditional Distributions for the Gibbs Sampler

Suppose we have a model with k factors, conditional distributions for the PX Gibbs Sampler are presented below:

$$\begin{array}{*{20}c} {y_{ij} = {\mathbf{z'}}_{ij} {\mathbf{\lambda }}_j^* + \varepsilon _{ij},} & {\varepsilon _{ij} \sim N\left({0,\sigma _j^2 } \right),} \\ \end{array} $$

where \({\text{z}}_{ij} = \left({\eta _{i1}^*, \ldots,\eta _{ik_j }^* } \right)^\prime,{\lambda }_j^* = \left({\lambda _{j1}^*, \ldots,\lambda _{jk_j }^* } \right)^\prime \) denotes the free elements of row j of Λ*, and k j = min(j, k) is the number of free elements. Let \(\pi \left({{\lambda }_j^* } \right) = {\text{N}}_{k_j } \left({{\lambda }_{0j}^*,\Sigma _{0{\lambda }_j^* } } \right)\) denote the prior for \({\lambda }_j^*,\) the full conditional posterior distributions are as follows:

$$\pi \left({{\lambda }_j^* |\eta ^*,{\psi,}\sum {\text{,y}}} \right) = {\text{N}}_{kj} \left({\left({\sum\nolimits _{0{\lambda }_j^* }^{ - 1} + \sigma _j^{ - 2} {\mathbf{Z'}}_j {\mathbf{Z}}_j } \right)^{ - 1} \left({\sum\nolimits _{0{\lambda }_j^* }^{ - 1} {\lambda }_{0j}^* + \sigma _j^{ - 2} {\mathbf{Z'}}_j {\mathbf{Y}}_j } \right),\left({\sum\nolimits _{0{\lambda }_j^* }^{ - 1} + \sigma _j^{ - 2} {\mathbf{Z'}}_j {\mathbf{Z}}_j } \right)^{ - 1} } \right),$$

where Z j = (z 1j ,…,z nj )′ and Y j = (y 1j ,…, y nj )′. In addition, we have

$$\begin{array}{l} {\pi \left({\eta _i^* |\Lambda ^*,\sum,{\Psi,\text{y}}} \right) = {\text{N}}_k \left({\left({{\Psi }^{ - 1} + \Lambda ^{*\prime} \sum ^{ - 1} \Lambda ^* } \right)^{ - 1} \Lambda ^{*\prime} \sum ^{ - 1} {\mathbf{y}}_i,\left({{\mathbf{\Psi }}^{ - 1} + \Lambda ^{*\prime} \sum ^{ - 1} \Lambda ^* } \right)^{ - 1} } \right),} \\ {\pi \left({\Psi _l^{ - 1} |\eta ^*,{\mathbf{\Lambda }}^*,\sum,{\mathbf{y}}} \right) = \mathcal{G}\left({a_l + \frac{n} {2},b_l + \frac{1} {2}\sum\limits_{i = 1}^n {\eta _{il}^{*2} } } \right),} \\ {\pi \left({\sigma _j^{ - 1} |\eta ^*,{\mathbf{\Lambda }}^*,{\Psi },{\mathbf{y}}} \right) = \mathcal{G}\left({c_j + \frac{n} {2},b_j + \frac{1} {2}\sum\limits_{i = 1}^n {\left({y_{ij} - {\mathbf{z'}}_{ij} {\mathbf{\lambda }}_j^* } \right)^2 } } \right),} \\ \end{array} $$

where g(a l , b l ) is the prior for \(\psi _l^{ - 1},\) for l = 1,…,k, and g(c j , d j ) is the prior for \(\sigma _j^{ - 2},\) for j = 1,…,p.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, J., Dunson, D.B. (2008). Bayesian Model Selection in Factor Analytic Models. In: Dunson, D.B. (eds) Random Effect and Latent Variable Model Selection. Lecture Notes in Statistics, vol 192. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76721-5_7

Download citation

Publish with us

Policies and ethics