Skip to main content

Symbiotic Relationship of Pharmacogenetics and Drugs of Abuse

  • Chapter
Drug Addiction
  • 2327 Accesses

Abstract

Pharmacogenetics/pharmacogenomics is the study of how genetic variation affects pharmacology, the use of drugs to treat disease. When drug responses are predicted in advance, it is easier to tailor medications to different diseases and individuals. Pharmacogenetics provides the tools required to identify genetic predictors of probable drug response, drug efficacy, and drug-induced adverse events—identifications that would ideally precede treatment decisions. Drug abuse and addiction genetic data have advanced the field of pharmacogenetics in general. Although major findings have emerged, pharmacotherapy remains hindered by issues such as adverse events, time lag to drug efficacy, and heterogeneity of the disorders being treated. The sequencing of the human genome and high-throughput technologies are enabling pharmacogenetics to have greater influence on treatment approaches. This review highlights key studies and identifies important genes in drug abuse pharmacogenetics that provide a basis for better diagnosis and treatment of drug abuse disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uhl GR, Grow RW. The burden of complex genetics in brain disorders. Arch Gen Psychiatry. 2004;61:223-229.

    PubMed  Google Scholar 

  2. Lichtermann D, Franke P, Maier W, Rao ML. Pharmacogenomics and addiction to opiates. Eur J Pharmacol. 2000;410:269-279.

    PubMed  CAS  Google Scholar 

  3. Berrettini W, Bierut L, Crowley T, et al. Letter—Setting priorities for genomic research. Science. 2004;304:1445-1447.

    PubMed  CAS  Google Scholar 

  4. Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet. 2005;6:521-532.

    PubMed  CAS  Google Scholar 

  5. Lessov CN, Swan GE, Ring HZ, Khroyan TV, Lerman C. Genetics and drug use as a complex phenotype. Subst Use Misuse. 2004;39:1515-1569.

    PubMed  Google Scholar 

  6. Hall WD. Will nicotine genetics and a nicotine vaccine prevent cigarette smoking and smok-ing-related diseases? PLoS Med. 2005;2:e266.

    PubMed  Google Scholar 

  7. Merikangas KR, Risch N. Setting priorities for genomic research. Science. 2003;302:599-601.

    PubMed  CAS  Google Scholar 

  8. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487-491.

    PubMed  CAS  Google Scholar 

  9. Miksys S, Tyndale RF. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci. 2002;27:406-415.

    PubMed  Google Scholar 

  10. Peto R. Smoking and death: the past 40 years and the next 40. BMJ. 1994;309:937-939.

    PubMed  CAS  Google Scholar 

  11. Benowitz NL. Drug therapy: pharmacologic aspects of cigarette smoking and nicotine addic-tion. N Engl J Med. 1988;319:1318-1330.

    Article  PubMed  CAS  Google Scholar 

  12. Bjartveit K, Tverdal A. Health consequences of smoking 1-4 cigarettes per day. Tob Control. 2005;14:315-320.

    PubMed  CAS  Google Scholar 

  13. Kawachi I, Colditz GA, Stampfer MJ, et al. Smoking cessation and time course of decreased risks of coronary heart disease in middle-aged women. Arch Intern Med. 1994;154: 169-175.

    PubMed  CAS  Google Scholar 

  14. Rosengren A, Wilhelmsen L, Wedel H. Coronary heart disease, cancer and mortality in middle-aged light smokers. J Intern Med. 1992;231:357-362.

    PubMed  CAS  Google Scholar 

  15. Prescott E, Scharling H, Osler M, et al. Importance of light smoking and inhalation habits on risk of myocardial infarction and all cause mortality: a 22-year follow-up of 12,149 men and women in the Copenhagen City heart study. J Epidemiol Community Health. 2002;56:702-706.

    PubMed  CAS  Google Scholar 

  16. Shiffman S, Fischer LB, Zettler-Segal M, Benowitz NL. Nicotine exposure among nonde-pendent smokers. Arch Gen Psychiatry. 1990;47:333-336.

    PubMed  CAS  Google Scholar 

  17. Ellickson PL, McCaffrey DF, Ghosh-Dastidar B, Longshore DL. New inroads in preventing adolescent drug use: results from a large-scale trial of project ALERT in middle schools. Am J Public Health. 2003;93:1830-1836.

    PubMed  Google Scholar 

  18. Hall W, Madden P, Lynskey M. The genetics of tobacco use: methods, findings and policy implications. Tob Control. 2002;11:119-124.

    PubMed  CAS  Google Scholar 

  19. Tyndale RF. Genetics of alcohol and tobacco use in humans. Ann Med. 2003;35:94-121.

    PubMed  CAS  Google Scholar 

  20. Li MD, Cheng R, Ma JZ, Swan GE. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction. 2003;98:23-31.

    PubMed  Google Scholar 

  21. Bierut LJ, Rice JP, Edenberg HJ, et al. Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking. Am J Med Genet. 2000;90:299-302.

    PubMed  CAS  Google Scholar 

  22. Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C, Muhleman D. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics. 1996;6:73-79.

    PubMed  CAS  Google Scholar 

  23. Beuten J, Ma JZ, Payne TJ, et al. Single- and multilocus allelic variants within the GABAB receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. Am J Hum Genet. 2005;76:859-864.

    PubMed  CAS  Google Scholar 

  24. Vandenbergh DJ, Kozlowski LT, Bennett CJ, et al. DAT’s not all, but it may be more than we realize. Nicotine Tob Res. 2002;4:251-252.

    PubMed  Google Scholar 

  25. Lerman C, Shields PG, Audrain J, et al. The role of the serotonin transporter gene in cigarette smoking. Cancer Epidemiol Biomarkers Prev. 1998;7:253-255.

    PubMed  CAS  Google Scholar 

  26. Shields PG, Lerman C, Audrain J, et al. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 1998;7:453-458.

    PubMed  CAS  Google Scholar 

  27. Sabol SZ, Nelson ML, Fisher C, et al. A genetic association for cigarette smoking behavior. Health Psychol. 1999;18:7-13.

    PubMed  CAS  Google Scholar 

  28. Sullivan PF, Jiang Y, Neale MC, Kendler KS, Straub RE. Association of the tryptophan hydroxylase gene with smoking initiation but not progression in nicotine dependence. Am J Med Genet. 2001;105:479-484.

    PubMed  CAS  Google Scholar 

  29. Swan GE, Valdes AM, Ring HZ, et al. Dopamine receptor DRD2 genotype and smoking cessa-tion outcome following treatment with bupropion SR. Pharmacogenomics J. 2005;5:21-29.

    PubMed  CAS  Google Scholar 

  30. McKinney EF, Walton RT, Yudkin P, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10:483-491.

    PubMed  CAS  Google Scholar 

  31. Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004;23:540-545.

    PubMed  CAS  Google Scholar 

  32. Kreek MJ, Bart G, Lilly C, Laforge KS, Nielsen DA. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev. 2005;57:1-26.

    PubMed  CAS  Google Scholar 

  33. Xie W, Altamirano CV, Bartels CF, Speirs RJ, Cashman JR, Lockridge O. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient. Mol Pharmacol. 1999;55:83-91.

    PubMed  CAS  Google Scholar 

  34. Mogil JS, Miermeister F, Seifert F, et al. Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci USA. 2005;102: 12938-12943.

    PubMed  CAS  Google Scholar 

  35. Owens JC, Balogh SA, McClure-Begley TD, et al. Alpha 4 beta 2* nicotinic acetylcholine receptors modulate the effects of ethanol and nicotine on the acoustic startle response. Alcohol Clin Exp Res. 2003;27:1867-1875.

    PubMed  CAS  Google Scholar 

  36. Cohen C, Kodas E, Griebel G. CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav. 2005;81:387-395.

    PubMed  CAS  Google Scholar 

  37. Castane A, Berrendero F, Maldonado R. The role of the cannabinoid system in nicotine addiction. Pharmacol Biochem Behav. 2005;81:381-386.

    PubMed  CAS  Google Scholar 

  38. Zubieta JK, Heitzeg MM, Smith YR, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299:1240-1243.

    PubMed  CAS  Google Scholar 

  39. Li T, Chen CK, Hu X, et al. Association analysis of the DRD4 and COMT genes in meth-amphetamine abuse. Am J Med Genet B Neuropsychiatr Genet. 2004;129:120-124.

    Google Scholar 

  40. Vandenbergh DJ, Rodriguez LA, Hivert E, et al. Long forms of the dopamine receptor (DRD4) gene VNTR are more prevalent in substance abusers: no interaction with functional alleles of the catechol-o-methyltransferase (COMT) gene. Am J Med Genet. 2000;96:678-683.

    PubMed  CAS  Google Scholar 

  41. Tyndale RF, Sellers EM. Variable CYP2A6-mediated nicotine metabolism alters smoking behavior and risk. Drug Metab Dispos. 2001;29:548-552.

    PubMed  CAS  Google Scholar 

  42. Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature. 1998;393:750.

    PubMed  CAS  Google Scholar 

  43. Gelernter J, Kranzler HR, Satel SL, Rao PA. Genetic association between dopamine trans-porter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology. 1994;11:195-200.

    PubMed  CAS  Google Scholar 

  44. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001;1:152-156.

    PubMed  CAS  Google Scholar 

  45. Lott DC, Jr, Kim S-J, Jr, Cook EH, Jr, de Wit H. Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology. 2005;30:602-609.

    PubMed  CAS  Google Scholar 

  46. Stein MA, Waldman ID, Sarampote CS, et al. Dopamine transporter genotype and methylpheni-date dose response in children with ADHD. Neuropsychopharmacology. 2005;30:1374-1382.

    PubMed  CAS  Google Scholar 

  47. Chen R, Han DD, Gu HH. A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate. J Neurochem. 2005;94:352-359.

    PubMed  CAS  Google Scholar 

  48. Lerman C, Jepson C, Wileyto EP, et al. Role of Functional Genetic Variation in the Dopamine D2 Receptor (DRD2) in Response to Bupropion and Nicotine Replacement Therapy for Tobacco Dependence: Results of Two Randomized Clinical Trials. Neuropsychopharmacology. 2006;31:231-242.

    PubMed  CAS  Google Scholar 

  49. Xu K, Lichtermann D, Lipsky RH, et al. Association of specific haplotypes of D2 dopamine receptor gene with vulnerability to heroin dependence in 2 distinct populations. Arch Gen Psychiatry. 2004;61:597-606.

    PubMed  CAS  Google Scholar 

  50. Noble EP, Zhang X, Ritchie TL, Sparkes RS. Haplotypes at the DRD2 locus and severe alcoholism. Am J Med Genet. 2000;96:622-631.

    PubMed  CAS  Google Scholar 

  51. Gelernter J, Kranzler H. D2 dopamine receptor gene (DRD2) allele and haplotype frequen-cies in alcohol dependent and control subjects: no association with phenotype or severity of phenotype. Neuropsychopharmacology. 1999;20:640-649.

    PubMed  CAS  Google Scholar 

  52. Sander T, Ladehoff M, Samochowiec J, Finckh U, Rommelspacher H, Schmidt LG. Lack of an allelic association between polymorphisms of the dopamine D2 receptor gene and alcohol dependence in the German population. Alcohol Clin Exp Res. 1999;23:578-581.

    PubMed  CAS  Google Scholar 

  53. Gelernter J, Kranzler H, Satel SL. No association between D2 dopamine receptor (DRD2) alleles or haplotypes and cocaine dependence or severity of cocaine dependence in European-and African-Americans. Biol Psychiatry. 1999;45:340-345.

    PubMed  CAS  Google Scholar 

  54. Goldman D, Urbanek M, Guenther D, Robin R, Long JC. Linkage and association of a func-tional DRD2 variant [Ser311Cys] and DRD2 markers to alcoholism, substance abuse and schizophrenia in Southwestern American Indians. Am J Med Genet. 1997;74:386-394.

    PubMed  CAS  Google Scholar 

  55. Chen CK, Hu X, Lin SK, et al. Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr Genet. 2004;14:223-226.

    PubMed  Google Scholar 

  56. Chang FM, Ko HC, Lu RB, Pakstis AJ, Kidd KK. The dopamine D4 receptor gene (DRD4) is not associated with alcoholism in three Taiwanese populations: six polymorphisms tested separately and as haplotypes. Biol Psychiatry. 1997;41:394-405.

    PubMed  CAS  Google Scholar 

  57. Nishiyama T, Ikeda M, Iwata N, et al. Haplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder. Pharmacogenomics J. 2005;5:89-95.

    PubMed  CAS  Google Scholar 

  58. Hashimoto T, Hashimoto K, Matsuzawa D, et al. A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2005;135:5-9.

    Google Scholar 

  59. Zimniak P, Nanduri B, Pikula S, et al. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem. 1994;224:893-899.

    PubMed  CAS  Google Scholar 

  60. Szumlinski KK, Abernathy KE, Oleson EB, et al. Homer isoforms differentially regulate cocaine-induced neuroplasticity. Neuropsychopharmacology. 2005;14.Epub ahead of print.

    Google Scholar 

  61. Mogil JS, Ritchie J, Smith SB, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet. 2005;42:583-587.

    PubMed  CAS  Google Scholar 

  62. Mogil JS, Wilson SG, Chesler EJ, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA. 2003;100:4867-4872.

    PubMed  CAS  Google Scholar 

  63. Kim H, Neubert JK, San MA, et al. Genetic influences on variability in human acute experi-mental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain. 2004;109:488-496.

    PubMed  Google Scholar 

  64. Lerman C, Wileyto EP, Patterson F, et al. The functional mu opioid receptor (OPRM1) Asn40Asp variant predicts short-term response to nicotine replacement therapy in a clinical trial. Pharmacogenomics J. 2004;4:184-192.

    PubMed  CAS  Google Scholar 

  65. Gelernter J, Kranzler H, Cubells J. Genetics of two µ opioid receptor gene (OPRM1) exon 1 polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatry. 1999;4:476-483.

    PubMed  CAS  Google Scholar 

  66. Bart G, Heilig M, LaForge KS, et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry. 2004;9:547-549.

    PubMed  CAS  Google Scholar 

  67. Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addic-tion. Proc Natl Acad Sci USA. 1998;95:9608-9613.

    PubMed  CAS  Google Scholar 

  68. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem. 2001;276:3130-3137.

    PubMed  CAS  Google Scholar 

  69. Beyer A, Kock T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitiza-tion of the human mu-opioid receptor. J Neurochem. 2004;89:553-560.

    PubMed  CAS  Google Scholar 

  70. Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor(OPRM1) caused by variant A118G. J Biol Chem. 2005;280: 32618-32624.

    PubMed  CAS  Google Scholar 

  71. Oslin DW, Berrettini W, Kranzler HR, et al. A functional polymorphism of the µ-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology. 2003;28:1546-1552.

    PubMed  CAS  Google Scholar 

  72. Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics. 2002;12:3-9.

    PubMed  CAS  Google Scholar 

  73. Fillingim RB, Kaplan L, Staud R, et al. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain. 2005;6:159-167.

    PubMed  CAS  Google Scholar 

  74. Fiore MC. Treating tobacco use and dependence: an introduction to the US Public Health Service Clinical Practice Guideline. Respir Care. 2000;45:1196-1199.

    PubMed  CAS  Google Scholar 

  75. National Institute on Drug Abuse. Research Report Series: Nicotine Addiction. NIH Publ No 01-4342. 2001. Bethesda, MD:NIDA. Available at: http://www.nida.nih.gov/researchre-ports/nicotine/nicotine.html. Accessed February 23, 2006.

  76. Fiore MC, Smith SS, Jorenby DE, Baker TB. The effectiveness of the nicotine patch for smoking cessation: a meta-analysis. JAMA. 1994;271:1940-1947.

    PubMed  CAS  Google Scholar 

  77. Paoletti P, Fornai E, Maggiorelli F, et al. Importance of baseline cotinine plasma values in smoking cessation: results from a double-blind study with nicotine patch. Eur Respir J. 1996;9:643-651.

    PubMed  CAS  Google Scholar 

  78. Pickworth WB, Fant RV, Butschky MF, Henningfield JE. Effects of transdermal nicotine deliv-ery on measures of acute nicotine withdrawal. J Pharmacol Exp Ther. 1996;279:450-456.

    PubMed  CAS  Google Scholar 

  79. Foulds J, Burke M, Steinberg M, Williams JM, Ziedonis DM. Advances in pharmacotherapy for tobacco dependence. Expert Opin Emerg Drugs. 2004;9:39-53.

    PubMed  CAS  Google Scholar 

  80. Anthenelli RM. Rimonabant helps for smoking cessation, weight loss. ACC 53rd Annual Scientific Session: Late-Breaking Clinical Trials; March 9, 2004; New Orleans, LA.

    Google Scholar 

  81. Heading CE. NicVAX Nabi Biopharmaceuticals. IDrugs. 2003;6:1178-1181.

    PubMed  CAS  Google Scholar 

  82. Cerny T. Anti-nicotine vaccination: where are we now? Recent Results Cancer Res. 2005;166:167-175.

    PubMed  CAS  Google Scholar 

  83. Hatsukami DK, Rennard S, Jorenby D, et al. Safety and immunogenicity of a nicotine conjugate vaccine in current smokers. Clin Pharmacol Ther. 2005;78:456-467.

    PubMed  CAS  Google Scholar 

  84. Dale LC, Glover ED, Sachs DP, et al. Bupropion for smoking cessation: predictors of successful outcome. Chest. 2001;119:1357-1364.

    PubMed  CAS  Google Scholar 

  85. Merikangas KR, Stolar M, Stevens DE, et al. Familial transmission of substance use disorders. Arch Gen Psychiatry. 1998;55:973-979.

    PubMed  CAS  Google Scholar 

  86. Tsuang MT, Lyons MJ, Meyer JM, et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch Gen Psychiatry. 1998;55:967-972.

    PubMed  CAS  Google Scholar 

  87. Regier DA, Farmer ME, Rae DS, et al. Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiology Catchment Area (ECA) study. JAMA. 1990;264:2511-2518.

    PubMed  CAS  Google Scholar 

  88. Ikeda K, Soichiro I, Han W, Hayashida M, Uhl GR, Sora I. How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci. 2005;26:311-317.

    PubMed  CAS  Google Scholar 

  89. Ross JR, Rutter D, Welsh K, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 2005;5:324-336.

    PubMed  CAS  Google Scholar 

  90. Tiseo PJ, Thaler HT, Lapin J, Inturrisi CE, Portenoy RK, Foley KM. Morphine-6-glucuro-nide concentrations and opioid-related side effects: a survey in cancer patients. Pain. 1995;61:47-54.

    PubMed  CAS  Google Scholar 

  91. MacGregor AJ, Griffiths GO, Baker J, Spector TD. Determinants of pressure pain threshold in adult twins: evidence that shared environmental influences predominate. Pain. 1997;73:253-257.

    PubMed  CAS  Google Scholar 

  92. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968-971.

    PubMed  CAS  Google Scholar 

  93. Snyder SH. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry. 1973;130:61-67.

    PubMed  CAS  Google Scholar 

  94. Sato M, Chen CC, Akiyama K, Otsuki S. Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol Psychiatry. 1983;18:429-440.

    PubMed  CAS  Google Scholar 

  95. Volkow ND. Message from the Director on Amphetamine Abuse. Available at: http://www. nida.nih.gov/about/welcome/messagemeth405.html. Accessed February 23, 2006.

  96. Kendler KS, Karkowski LM, Neale MC, Prescott CA. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry. 2000;57:261-269.

    PubMed  CAS  Google Scholar 

  97. Tsuang MT, Lyons MJ, Eisen SA, et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am J Med Genet. 1996;67:473-477.

    PubMed  CAS  Google Scholar 

  98. Leshner AI. Addiction is a brain disease, and it matters. Science. 1997;278:45-47.

    PubMed  CAS  Google Scholar 

  99. Merikangas KR, Risch N. Will the genomics revolution revolutionize psychiatry? Am J Psychiatry. 2003;160:625-635.

    PubMed  Google Scholar 

  100. Croghan TW, Tomlin M, Pescosolido BA, et al. American attitudes toward and willingness to use psychiatric medications. J Nerv Ment Dis. 2003;191:166-174.

    PubMed  Google Scholar 

  101. Nunes EV, Levin FR. Treatment of depression in patients with alcohol or other drug dependence: a meta-analysis. JAMA. 2004;291:1887-1896.

    PubMed  CAS  Google Scholar 

  102. Kendler KS, Jacobson KC, Prescott CA, Neale MC. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am J Psychiatry. 2003;160:687-695.

    PubMed  Google Scholar 

  103. Bierut LJ, Rice JP, Goate A, et al. A genomic scan for habitual smoking in families of alco-holics: common and specific genetic factors in substance dependence. Am J Med Genet A. 2004;124:19-27.

    Google Scholar 

  104. Frueh FW, Goodsaid F, Rudman A, Huang S-M, Lesko LJ. The need for education in phar-macogenomics: a regulatory perspective. Pharmacogenomics J. 2005;5:218-220.

    PubMed  CAS  Google Scholar 

  105. Rubin DL, Thorn C, Klein TE, Altman RB. A statistical approach to scanning the biomedical literature for pharmacogenetics knowledge. J Am Med Inform Assoc. 2005;12:121-129.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joni L. Rutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Rutter, J.L. (2008). Symbiotic Relationship of Pharmacogenetics and Drugs of Abuse. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_4

Download citation

Publish with us

Policies and ethics