Skip to main content

The Therapeutic Potential of Drugs that Target Cannabinoid Receptors or Modulate the Tissue Levels or Actions of Endocannabinoids

  • Chapter
Drug Addiction

Abstract

There are at least 2 types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release, whereas CB2 receptors are found mainly on immune cells, their roles including the modulation of cytokine release and of immune cell migration. Endogenous agonists for cannabinoid receptors also exist. These “endocannabinoids” are synthesized on demand and removed from their sites of action by cellular uptake and intracellular enzymic hydrolysis. Endocannabinoids and their receptors together constitute the endocannabinoid system. This review summarizes evidence that there are certain central and peripheral disorders in which increases take place in the release of endocannabinoids onto their receptors and/or in the density or coupling efficiency of these receptors and that this upregulation is protective in some disorders but can have undesirable consequences in others. It also considers therapeutic strategies by which this upregulation might be modulated to clinical advantage. These strategies include the administration of (1) a CB1 and/or CB2 receptor agonist or antagonist that does or does not readily cross the blood brain barrier; (2) a CB1 and/or CB2 receptor agonist intrathecally or directly to some other site outside the brain; (3) a partial CB1 and/or CB2 receptor agonist rather than a full agonist; (4) a CB1 and/or CB2 receptor agonist together with a noncannabinoid, for example, morphine or codeine; (5) an inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism; (6) an allosteric modulator of the CB1 receptor; and (7) a CB2 receptor inverse agonist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161-202.

    PubMed  Google Scholar 

  2. Pertwee RG. Pharmacological actions of cannabinoids. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:1-51.

    Google Scholar 

  3. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561-564.

    PubMed  Google Scholar 

  4. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61-65.

    PubMed  Google Scholar 

  5. Pertwee RG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem. 1999;6:635-664.

    PubMed  Google Scholar 

  6. Pertwee RG. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 2005;76:1307-1324.

    PubMed  Google Scholar 

  7. Pertwee RG. Novel pharmacological targets for cannabinoids. Curr Neuropharmacol. 2004;2:9-29.

    Google Scholar 

  8. Price MR, Baillie G, Thomas A, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. In press.

    Google Scholar 

  9. Bradshaw HB, Walker JM. The expanding field of cannabimimetic and related lipid media-tors. Br J Pharmacol. 2005;144:459-465.

    PubMed  Google Scholar 

  10. Steffens M, Zentner J, Honegger J, Feuerstein TJ. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochem Pharmacol. 2005;69:169-178.

    PubMed  Google Scholar 

  11. Cabral GA, Staab A. Effects on the immune system. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:385-423.

    Google Scholar 

  12. Szabo B, Schlicker E. Effects of cannabinoids on neurotransmission. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:327-365.

    Google Scholar 

  13. Vaughan CW, Christie MJ. Retrograde signalling by endocannabinoids. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:367-383.

    Google Scholar 

  14. Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM. Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachido-noyl-dopamine and arachidonyl-2-chloroethylamide. Br J Pharmacol. 2004;141:1118-1130.

    PubMed  Google Scholar 

  15. Baker CL, McDougall JJ. The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints. Br J Pharmacol. 2004;142:1361-1367.

    PubMed  Google Scholar 

  16. Di Marzo V, De Petrocellis L, Bisogno T. The biosynthesis, fate and pharmacological proper-ties of endocannabinoids. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:147-185.

    Google Scholar 

  17. Bisogno T, Melck D, Bobrov MY, et al. N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351:817-824.

    PubMed  Google Scholar 

  18. Leggett JD, Aspley S, Beckett SRG, D’Antona AM, Kendall DA, Kendall DA. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141:253-262.

    PubMed  Google Scholar 

  19. Porter AC, Sauer J-M, Knierman MD, et al. Characterization of a novel endocannabinoid, virod-hamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301:1020-1024.

    PubMed  Google Scholar 

  20. Cravatt BF, Lichtman AH. The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol. 2004;61:149-160.

    PubMed  Google Scholar 

  21. Hillard CJ, Jarrahian A. Cellular accumulation of anandamide: consensus and controversy. Br J Pharmacol. 2003;140:802-808.

    PubMed  Google Scholar 

  22. Ueda N. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat. 2002;68-9: 521-534.

    Google Scholar 

  23. Ho W-SV, Hillard CJ. Modulators of endocannabinoid enzymic hydrolysis and membrane transport. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:187-207.

    Google Scholar 

  24. Gulyas AI, Cravatt BF, Bracey MH, et al. Segregation of 2 endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amy-gdala. Eur J Neurosci. 2004;20:441-458.

    PubMed  Google Scholar 

  25. Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem. 2001;276:35552-35557.

    PubMed  Google Scholar 

  26. Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci. 2005;62:708-716.

    PubMed  Google Scholar 

  27. Fegley D, Gaetani S, Duranti A, et al. Characterization of the fatty acid amide hydrolase inhibi-tor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandam-ide and oleoylethanolamide deactivation. J Pharmacol Exp Ther. 2005;313:352-358.

    PubMed  Google Scholar 

  28. Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids. 2002;66:211-220.

    PubMed  Google Scholar 

  29. Saario SM, Savinainen JR, Laitinen JT, Järvinen T, Niemi R. Monoglyceride lipase-like enzy-matic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar mem-branes. Biochem Pharmacol. 2004;67:1381-1387.

    PubMed  Google Scholar 

  30. Dinh TP, Kathuria S, Piomelli D. RNA interference suggests a primary role for monoacylg-lycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol Pharmacol. 2004;66:1260-1264.

    PubMed  Google Scholar 

  31. Fezza F, Bisogno T, Minassi A, Appendino G, Mechoulam R, Di Marzo V. Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quan-tification in rat tissues. FEBS Lett. 2002;513:294-298.

    PubMed  Google Scholar 

  32. De Petrocellis L, Davis JB, Di Marzo V. Palmitoylethanolamide enhances anandamide stimu-lation of human vanilloid VR1 receptors. FEBS Lett. 2001;506:253-256.

    PubMed  Google Scholar 

  33. Sheskin T, Hanus L, Slager J, Vogel Z, Mechoulam R. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J Med Chem. 1997;40:659-667.

    PubMed  Google Scholar 

  34. Fernando SR, Pertwee RG. Evidence that methyl arachidonyl fluorophosphonate is an irre-versible cannabinoid receptor antagonist. Br J Pharmacol. 1997;121:1716-1720.

    PubMed  Google Scholar 

  35. Savinainen JR, Saario SM, Niemi R, Järvinen T, Laitinen JT. An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Br J Pharmacol. 2003;140:1451-1459.

    PubMed  Google Scholar 

  36. Nithipatikom K, Endsley MP, Isbell MA, et al. 2-Arachidonoylglycerol: a novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 2004;64:8826-8830.

    PubMed  Google Scholar 

  37. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9:76-81.

    PubMed  Google Scholar 

  38. Lichtman AH, Leung D, Shelton CC, et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectiv-ity. J Pharmacol Exp Ther. 2004;311:441-448.

    PubMed  Google Scholar 

  39. Huang SM, Bisogno T, Petros TJ, et al. Identification of a new class of molecules, the ara-chidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem. 2001;276:42639-42644.

    PubMed  Google Scholar 

  40. Bisogno T, Melck D, De Petrocellis L, et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun. 1998;248:515-522.

    PubMed  Google Scholar 

  41. Ligresti A, Bisogno T, Matias I, et al. Possible endocannabinoid control of colorectal cancer growth. Gastroenterology. 2003;125:677-687.

    PubMed  Google Scholar 

  42. Jonsson K-O, Vandevoorde S, Lambert DM, Tiger G, Fowler CJ. Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandam-ide. Br J Pharmacol. 2001;133:1263-1275.

    PubMed  Google Scholar 

  43. Khanolkar AD, Abadji V, Lin S, et al. Head group analogs of arachidonylethanolamide, the endogenous cannabinoid ligand. J Med Chem. 1996;39:4515-4519.

    PubMed  Google Scholar 

  44. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science. 1997;277:1094-1097.

    PubMed  Google Scholar 

  45. Jarrahian A, Manna S, Edgemond WS, Campbell WB, Hillard CJ. Structure-activity relationships among N-arachidonylethanolamine (anandamide) head group analogues for the anandamide trans-porter. J Neurochem. 2000;74:2597-2606.

    PubMed  Google Scholar 

  46. Zygmunt PM, Chuang H, Movahed P, Julius D, Högestätt ED. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol. 2000;396:39-42.

    PubMed  Google Scholar 

  47. De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 2000;483:52-56.

    PubMed  Google Scholar 

  48. Fowler CJ, Tiger G, Ligresti A, López-Rodríguez ML, Di Marzo V. Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis—a difficult issue to handle. Eur J Pharmacol. 2004;492:1-11.

    PubMed  Google Scholar 

  49. Ortar G, Ligresti A, De Petrocellis L, Morera E, Di Marzo V. Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem Pharmacol. 2003;65:1473-1481.

    PubMed  Google Scholar 

  50. López-Rodríguez ML, Viso A, Ortega-Gutiérrez S, et al. Design, synthesis and biological evalu-ation of new endocannabinoid transporter inhibitors. Eur J Med Chem. 2003;38:403-412.

    PubMed  Google Scholar 

  51. Ruiz-Llorente L, Ortega-Gutiérrez S, Viso A, et al. Characterization of an anandamide degra-dation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study. Br J Pharmacol. 2004;141:457-467.

    PubMed  Google Scholar 

  52. Benito C, Núñez E, Tolón RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydro-lase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci. 2003;23:11136-11141.

    PubMed  Google Scholar 

  53. Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán N, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005;25:1904-1913.

    PubMed  Google Scholar 

  54. Giuffrida A, Leweke FM, Gerth CW, et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharma-cology. 2004;29:2108-2114.

    Google Scholar 

  55. Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D. Elevated endogenous cannabi-noids in schizophrenia. Neuroreport. 1999;10:1665-1669.

    PubMed  Google Scholar 

  56. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience. 2001;103:9-15.

    PubMed  Google Scholar 

  57. Zavitsanou K, Garrick T, Huang XF. Selective antagonist [3H]SR141716A binding to can-nabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:355-360.

    PubMed  Google Scholar 

  58. De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003;2:1-9.

    Google Scholar 

  59. Hungund BL, Vinod KY, Kassir SA, et al. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry. 2004;9:184-190.

    PubMed  Google Scholar 

  60. Vinod KY, Arango V, Xie S, et al. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol Psychiatry. 2005;57:480-486.

    PubMed  Google Scholar 

  61. Lastres-Becker I, Cebeira M, de Ceballos ML, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci. 2001;14:1827-1832.

    PubMed  Google Scholar 

  62. Glass M, Faull R, Dragunow M. Loss of cannabinoid receptors in the substantia-nigra in Huntington’s disease. Neurosci. 1993;56:523-527.

    Google Scholar 

  63. Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol. 1994;36:577-584.

    PubMed  Google Scholar 

  64. Schäbitz W-R, Giuffrida A, Berger C, et al. Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke. 2002;33:2112-2114.

    PubMed  Google Scholar 

  65. Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agricò A. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscar-riage. Lancet. 2000;355:1326-1329.

    PubMed  Google Scholar 

  66. Maccarrone M, Bisogno T, Valensise H, et al. Low fatty acid amide hydrolase and high anan-damide levels are associated with failure to achieve an ongoing pregnancy after IVF and embryo transfer. Mol Hum Reprod. 2002;8:188-195.

    PubMed  Google Scholar 

  67. Wang Y, Liu Y, Ito Y, et al. Simultaneous measurement of anandamide and 2- arachidonoylg-lycerol by polymyxin B-selective adsorption and subsequent high-performance liquid chroma-tography analysis: increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Anal Biochem. 2001;294:73-82.

    PubMed  Google Scholar 

  68. Bátkai S, Járai Z, Wagner JA, et al. Endocannabinoids acting at vascular CB1 receptors medi-ate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827-832.

    PubMed  Google Scholar 

  69. Fernández-Rodriguez CM, Romero J, Petros TJ, et al. Circulating endogenous cannabinoid anan-damide and portal, systemic and renal hemodynamics in cirrhosis. Liver Int. 2004;24:477-483.

    PubMed  Google Scholar 

  70. Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128:742-755.

    PubMed  Google Scholar 

  71. Steffens S, Veillard NR, Arnaud C, et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature. 2005;434:782-786.

    PubMed  Google Scholar 

  72. Maccarrone M, Attinà M, Cartoni A, Bari M, Finazzi-Agricò A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J Neurochem. 2001;76:594-601.

    PubMed  Google Scholar 

  73. Petersen G, Moesgaard B, Schmid PC, et al. Endocannabinoid metabolism in human glioblas-tomas and meningiomas compared to human non-tumour brain tissue. J Neurochem. 2005;93:299-309.

    PubMed  Google Scholar 

  74. Pagotto U, Marsicano G, Fezza F, et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: first evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J Clin Endocrinol Metab. 2001;86:2687-2696.

    PubMed  Google Scholar 

  75. Sarfaraz S, Afaq F, Adhami VM, Mukhtar H. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res. 2005;65:1635-1641.

    PubMed  Google Scholar 

  76. Motobe T, Hashiguchi T, Uchimura T, et al. Endogenous cannabinoids are candidates for lipid mediators of bone cement implantation syndrome. Shock. 2004;21:8-12.

    PubMed  Google Scholar 

  77. Baker D, Pryce G, Croxford JL, et al. Endocannabinoids control spasticity in a multiple scle-rosis model. FASEB J. 2001;15:300-302.

    PubMed  Google Scholar 

  78. Berrendero F, Sánchez A, Cabranes A, et al. Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse. 2001;41:195-202.

    PubMed  Google Scholar 

  79. Cheng BC, Xu H, Calbay L, Pertwee RG, Coutts A, Forrester JV. Specific CB2 receptor ago-nist suppresses the murine model of experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2004;45:552.

    Google Scholar 

  80. Witting A, Weydt P, Hong S, Kliot M, Möller T, Stella N. Endocannabinoids accumulate in spinal cord of SOD1G93A transgenic mice. J Neurochem. 2004;89:1555-1557.

    PubMed  Google Scholar 

  81. Benito C, Kim W-K, Chavarria I, et al. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci. 2005;25:2530-2536.

    PubMed  Google Scholar 

  82. Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev. 2003;27:639-651.

    PubMed  Google Scholar 

  83. Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endog-enous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000;14:1432-1438.

    PubMed  Google Scholar 

  84. Gubellini P, Picconi B, Bari M, et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci. 2002;22: 6900-6907.

    PubMed  Google Scholar 

  85. Maccarrone M, Gubellini P, Bari M, et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J Neurochem. 2003;85:1018-1025.

    PubMed  Google Scholar 

  86. Fernandez-Espejo E, Caraballo I, Rodriguez de Fonseca F, et al. Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function. Neuropsychopharmacology. 2004;29:1134-1142.

    PubMed  Google Scholar 

  87. Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. Effects of levodopa on endocannabi-noid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci. 2003;18:1607-1614.

    PubMed  Google Scholar 

  88. Herkenham M, Lynn AB, de Costa BR, Richfield EK. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 1991;547:267-274.

    PubMed  Google Scholar 

  89. Romero J, Berrendero F, Pérez-Rosado A, et al. Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-puta-men. Life Sci. 2000;66:485-494.

    PubMed  Google Scholar 

  90. Mailleux P, Vanderhaeghen J-J. Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem. 1993;61:1705-1712.

    PubMed  Google Scholar 

  91. Zeng B-Y, Dass B, Owen A, et al. Chronic L-DOPA treatment increases striatal cannabinoid CB1 receptor mRNA expression in 6-hydroxydopamine-lesioned rats. Neurosci Lett. 1999;276:71-74.

    PubMed  Google Scholar 

  92. McCaw EA, Hu H, Gomez GT, Hebb ALO, Kelly MEM, Denovan-Wright EM. Structure, expression and regulation of the cannabinoid receptor gene (CB1) in Huntington’s disease transgenic mice. Eur J Biochem. 2004;271:4909-4920.

    PubMed  Google Scholar 

  93. Page KJ, Besret L, Jain M, Monaghan EM, Dunnett SB, Everitt BJ. Effects of systemic 3-nitropropionic acid-induced lesions of the dorsal striatum on cannabinoid and µ-opioid receptor binding in the basal ganglia. Exp Brain Res. 2000;130:142-150.

    PubMed  Google Scholar 

  94. Lastres-Becker I, Fezza F, Cebeira M, et al. Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington’s disease. Neuroreport. 2001;12:2125-2129.

    PubMed  Google Scholar 

  95. Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz J, Brouillet E. Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. Neuroreport. 2004;15:2375-2379.

    PubMed  Google Scholar 

  96. Lastres-Becker I, Hansen HH, Berrendero F, et al. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse. 2002;44:23-35.

    PubMed  Google Scholar 

  97. Lastres-Becker I, Berrendero F, Lucas JJ, et al. Loss of mRNA levels, binding and activa-tion of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a trans-genic model of Huntington’s disease. Brain Res. 2002;929:236-242.

    PubMed  Google Scholar 

  98. Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci USA. 1999;96:12198-12203.

    PubMed  Google Scholar 

  99. Lim G, Sung B, Ji R-R, Mao J. Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55,212-2 on neuropathic pain behaviors in rats. Pain. 2003;105:275-283.

    PubMed  Google Scholar 

  100. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci. 2003;17:2750-2754.

    PubMed  Google Scholar 

  101. Dinis P, Charrua A, Avelino A, et al. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spi-nal dorsal horn neurons in cystitis. J Neurosci. 2004;24:11253-11263.

    PubMed  Google Scholar 

  102. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822-825.

    PubMed  Google Scholar 

  103. Bensaid M, Gary-Bobo M, Esclangon A, et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cul-tured adipocyte cells. Mol Pharmacol. 2003;63:908-914.

    PubMed  Google Scholar 

  104. Maccarrone M, Fride E, Bisogno T, et al. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. Mol Hum Reprod. 2005;11:21-28.

    PubMed  Google Scholar 

  105. Kirkham TC, Williams CM, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic fore-brain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550-557.

    PubMed  Google Scholar 

  106. Hill MN, Patel S, Carrier EJ, et al. Downregulation of endocannabinoid signaling in the hip-pocampus following chronic unpredictable stress. Neuropsychopharmacology. 2005;30: 508-515.

    PubMed  Google Scholar 

  107. Patel S, Roelke CT, Rademacher DJ, Hillard CJ. Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci. 2005;21: 1057-1069.

    PubMed  Google Scholar 

  108. Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinc-tion of aversive memories. Nature. 2002;418:530-534.

    PubMed  Google Scholar 

  109. Liu P, Bilkey DK, Darlington CL, Smith PF. Cannabinoid CB1 receptor protein expression in the rat hippocampus and entorhinal, perirhinal, postrhinal and temporal cortices: regional variations and age-related changes. Brain Res. 2003;979:235-239.

    PubMed  Google Scholar 

  110. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A. Exercise activates the endo-cannabinoid system. Neuroreport. 2003;14:2209-2211.

    PubMed  Google Scholar 

  111. Bátkai S, Pacher P, Osei-Hyiaman D, et al. Endocannabinoids acting at cannabinoid-1 recep-tors regulate cardiovascular function in hypertension. Circulation. 2004;110:1996-2002.

    PubMed  Google Scholar 

  112. Domenicali M, Ros J, Fernández-Varo G, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut. 2005;54:522-527.

    PubMed  Google Scholar 

  113. Varga K, Wagner JA, Bridgen DT, Kunos G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 1998;12:1035-1044.

    PubMed  Google Scholar 

  114. Liu J, Bátkai S, Pacher P, et al. Lipopolysaccharide induces anandamide synthesis in macro-phages via CD14/MAPK/phosphoinositide 3-kinase/NF-ͫB independently of platelet-activating factor. J Biol Chem. 2003;278:45034-45039.

    PubMed  Google Scholar 

  115. Maccarrone M, De Petrocellis L, Bari M, et al. Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys. 2001;393:321-328.

    PubMed  Google Scholar 

  116. Wagner JA, Hu K, Bauersachs J, et al. Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol. 2001;38:2048-2054.

    PubMed  Google Scholar 

  117. Izzo AA, Fezza F, Capasso R, et al. Cannabinoid CB1-receptor mediated regulation of gas-trointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol. 2001; 134:563-570.

    PubMed  Google Scholar 

  118. Massa F, Marsicano G, Hermann H, et al. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202-1209.

    PubMed  Google Scholar 

  119. Izzo AA, Capasso F, Costagliola A, et al. An endogenous cannabinoid tone attenuates chol-era toxin-induced fluid accumulation in mice. Gastroenterology. 2003;125:765-774.

    PubMed  Google Scholar 

  120. McVey DC, Schmid PC, Schmid HHO, Vigna SR. Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther. 2003;304:713-722.

    PubMed  Google Scholar 

  121. Mascolo N, Izzo AA, Ligresti A, et al. The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J. 2002;16:U131-U51.

    Google Scholar 

  122. Jin KL, Mao XO, Goldsmith PC, Greenberg DA. CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol. 2000;48:257-261.

    PubMed  Google Scholar 

  123. Muthian S, Rademacher DJ, Roelke CT, Gross GJ, Hillard CJ. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience. 2004;129:743-750.

    PubMed  Google Scholar 

  124. Kurabayashi M, Takeyoshi I, Yoshinari D, Matsumoto K, Maruyama I, Morishita Y. 2-Arachidonoylglycerol increases in ischemia-reperfusion injury of the rat liver. J Invest Surg. 2005;18:25-31.

    PubMed  Google Scholar 

  125. Hansen HH, Schmid PC, Bittigau P, et al. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem. 2001;78:1415-1427.

    PubMed  Google Scholar 

  126. Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An endogenous cannabinoid (2-AG) is neu-roprotective after brain injury. Nature. 2001;413:527-531.

    PubMed  Google Scholar 

  127. Sugiura T, Yoshinaga N, Kondo S, Waku K, Ishima Y. Generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in picrotoxinin-administered rat brain. Biochem Biophys Res Commun. 2000;271:654-658.

    PubMed  Google Scholar 

  128. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84-88.

    PubMed  Google Scholar 

  129. Chen K, Ratzliff A, Hilgenberg L, et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron. 2003;39:599-611.

    PubMed  Google Scholar 

  130. Maccarrone M, Piccirilli S, Battista N, et al. Enhanced anandamide degradation is associated with neuronal apoptosis induced by the HIV-1 coat glycoprotein gp120 in the rat neocortex. J Neurochem. 2004;89:1293-1300.

    PubMed  Google Scholar 

  131. Sánchez C, de Ceballos ML, Gómez del Pulgar T, et al. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res. 2001;61:5784-5789.

    PubMed  Google Scholar 

  132. Burstein SH, Rossetti RG, Yagen B, Zurier RB. Oxidative metabolism of anandamide. Prostaglandins Other Lipid Mediat. 2000;61:29-41.

    PubMed  Google Scholar 

  133. de Lago E, Ligresti A, Ortar G, et al. In vivo pharmacological actions of 2 novel inhibitors of anandamide cellular uptake. Eur J Pharmacol. 2004;484:249-257.

    PubMed  Google Scholar 

  134. Burstein SH, Huang SM, Petros TJ, Rossetti RG, Walker JM, Zurier RB. Regulation of anandamide tissue levels by N-arachidonylglycine. Biochem Pharmacol. 2002;64: 1147-1150.

    PubMed  Google Scholar 

  135. Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA. 2001;98:9371-9376.

    PubMed  Google Scholar 

  136. Lichtman AH, Shelton CC, Advani T, Cravatt BF. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain. 2004;109:319-327.

    PubMed  Google Scholar 

  137. Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci USA. 2004;101:10821-10826.

    PubMed  Google Scholar 

  138. Martin BR, Lichtman AH. Cannabinoid transmission and pain perception. Neurobiol Dis. 1998;5:447-461.

    PubMed  Google Scholar 

  139. Pertwee RG. Cannabinoid receptors and pain. Prog Neurobiol. 2001;63:569-611.

    PubMed  Google Scholar 

  140. Walker JM, Hohman AG. Cannabinoid mechanisms of pain suppression. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:509-54.

    Google Scholar 

  141. Herzberg U, Eliav E, Bennett GJ, Kopin IJ. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett. 1997;221:157-160.

    PubMed  Google Scholar 

  142. Edsall SA, Knapp RJ, Vanderah TW, Roeske WR, Consroe P, Yamamura HI. Antisense oli-godeoxynucleotide treatment to the brain cannabinoid receptor inhibits antinociception. Neuroreport. 1996;7:593-596.

    PubMed  Google Scholar 

  143. Richardson JD, Aanonsen L, Hargreaves KM. Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J Neurosci. 1998;18:451-457.

    PubMed  Google Scholar 

  144. Dogrul A, Gardell LR, Ma S, Ossipov MH, Porreca F, Lai J. ‘Knock-down’ of spinal CB1 receptors produces abnormal pain and elevates spinal dynorphin content in mice. Pain. 2002;100:203-209.

    PubMed  Google Scholar 

  145. Valverde O, Ledent C, Beslot F, Parmentier M, Roques BP. Reduction of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors. Eur J Neurosci. 2000;12:533-539.

    PubMed  Google Scholar 

  146. Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA. 2003;100:10529-10533.

    PubMed  Google Scholar 

  147. Ledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addic-tive effects of opiates in CB1 receptor knockout mice. Science. 1999;283:401-404.

    PubMed  Google Scholar 

  148. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA. 1999;96:5780-5785.

    PubMed  Google Scholar 

  149. Hanus L, Breuer A, Tchilibon S, et al. HU-308: a specific agonist for CB2, a peripheral can-nabinoid receptor. Proc Natl Acad Sci USA. 1999;96:14228-14233.

    PubMed  Google Scholar 

  150. Clayton N, Marshall FH, Bountra C, O’Shaughnessy CT. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain. 2002;96:253-260.

    PubMed  Google Scholar 

  151. Valenzano KJ, Tafesse L, Lee G, et al. Pharmacological and pharmacokinetic characteriza-tion of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology. 2005;48:658-672.

    PubMed  Google Scholar 

  152. Malan TP, Ibrahim MM, Deng H, et al. CB2 cannabinoid receptor-mediated peripheral anti-nociception. Pain. 2001;93:239-245.

    PubMed  Google Scholar 

  153. Nackley AG, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB2 recep-tors suppresses spinal Fos protein expression and pain behavior in a rat model of inflamma-tion. Neuroscience. 2003;119:747-757.

    PubMed  Google Scholar 

  154. Quartilho A, Mata HP, Ibrahim MM, et al. Inhibition of inflammatory hyperalgesia by acti-vation of peripheral CB2 cannabinoid receptors. Anesthesiology. 2003;99:955-960.

    PubMed  Google Scholar 

  155. Hohmann AG, Farthing JN, Zvonok AM, Makriyannis A. Selective activation of cannabi-noid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin. J Pharmacol Exp Ther. 2004;308:446-453.

    PubMed  Google Scholar 

  156. Ibrahim MM, Porreca F, Lai J, et al. CB2 cannabinoid receptor activation produces antinoci-ception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA. 2005;102:3093-3098.

    PubMed  Google Scholar 

  157. Ross RA, Coutts AA, McFarlane SM, et al. Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacology. 2001;40:221-232.

    PubMed  Google Scholar 

  158. Holt S, Comelli F, Costa B, Fowler CJ. Inhibitors of fatty acid amide hydrolase reduce car-rageenan induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br J Pharmacol. 2005;146:467-476.

    PubMed  Google Scholar 

  159. Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature. 1998;394:277-281.

    PubMed  Google Scholar 

  160. Beaulieu P, Bisogno T, Punwar S, et al. Role of the endogenous cannabinoid system in the formalin test of persistent pain in the rat. Eur J Pharmacol. 2000;396:85-92.

    Google Scholar 

  161. Notcutt W, Price M, Miller R, et al. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’ studies. Anaesthesia. 2004;59:440-452.

    PubMed  Google Scholar 

  162. Noyes R, Brunk SF, Baram DA, Canter A. Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol. 1975;15:139-143.

    PubMed  Google Scholar 

  163. Noyes R, Brunk SF, Avery DH, Canter A. Analgesic properties of delta-9-tetrahydrocannabi-nol and codeine. Clin Pharmacol Ther. 1975;18:84-89.

    PubMed  Google Scholar 

  164. Pertwee RG. Cannabinoids and multiple sclerosis. Pharmacol Ther. 2002;95:165-174.

    PubMed  Google Scholar 

  165. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to deter-mine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17:21-29.

    PubMed  Google Scholar 

  166. Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symp-toms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362:1517-1526.

    PubMed  Google Scholar 

  167. Gauter B, Rukwied R, Konrad C. Cannabinoid agonists in the treatment of blepharospasm - a case report study. Neuroendocrinol Lett. 2004;25:45-48.

    PubMed  Google Scholar 

  168. Brady CM, DasGupta R, Dalton C, Wiseman OJ, Berkley KJ, Fowler CJ. An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler. 2004;10:425-433.

    PubMed  Google Scholar 

  169. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomized double blind placebo controlled crossover trial. BMJ. 2004;329:253-257.

    PubMed  Google Scholar 

  170. Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T. In vitro and in vivo pharmacological char-acterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther. 2001;296:420-425.

    PubMed  Google Scholar 

  171. Lavey BJ, Kozlowski JA, Hipkin RW, et al. Triaryl bis-sulfones as a new class of cannabi-noid CB2 receptor inhibitors: identification of a lead and initial SAR studies. Bioorg Med Chem Lett. 2005;15:783-786.

    PubMed  Google Scholar 

  172. Lunn CA. Immune modulation by cannabinoids: targetting the cannabinoid CB2 receptor. Symposium on cannabinoid receptors: pharmacological opportunities for obesity and inflam-mation: New York Academy of Sciences, 2004; Available at: http://www.nyas.org/ebriefreps/ main.asp?intSubsectionID=1406.

  173. Costa B, Colleoni M, Trovato AE, Comelli F, Franke C, Giognoni G. Anandamide transport and hydrolysis as targets for the treatment of neuropathic pain: Effects of AM404 and URB597 in rats with chronic constriction injury of the sciatic nerve. 2005 Symposium on the Cannabinoids; June 24-27; Clearwater Beach, FL. Burlington, VT: International Cannabinoid Research Society.; 2005:33.

    Google Scholar 

  174. Mestre L, Correa F, Arévalo-Martin A, et al. Pharmacological modulation of the endocan-nabinoid system in a viral model of multiple sclerosis. J Neurochem. 2005;92:1327-1339.

    PubMed  Google Scholar 

  175. Pryce G, Ahmed Z, Hankey DJR, et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003;126:2191-2202.

    PubMed  Google Scholar 

  176. Baker D, Pryce G, Croxford JL, et al. Cannabinoids control spasticity and tremor in a multi-ple sclerosis model. Nature. 2000;404:84-87.

    PubMed  Google Scholar 

  177. Brooks JW, Pryce G, Bisogno T, et al. Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. Eur J Pharmacol. 2002;439:83-92.

    PubMed  Google Scholar 

  178. Wilkinson JD, Whalley BJ, Baker D, et al. Medicinal cannabis: is Δ9-tetrahydrocannabinol necessary for all its effects? J Pharm Pharmacol. 2003;55:1687-1694.

    PubMed  Google Scholar 

  179. Lyman WD, Sonett JR, Brosnan CF, Elkin R, Bornstein MB. Δ9-tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol. 1989;23:73-81.

    PubMed  Google Scholar 

  180. Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T. Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology. 1994;28:209-214.

    PubMed  Google Scholar 

  181. Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest. 2003;111:1231-1240.

    PubMed  Google Scholar 

  182. Arévalo-Martin N, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of can-nabinoids in a murine model of multiple sclerosis. J Neurosci. 2003;23:2511-2516.

    PubMed  Google Scholar 

  183. Vaney C, Heinzel-Gutenbrunner M, Jobin P, et al. Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler. 2004;10:417-424.

    PubMed  Google Scholar 

  184. Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, rand-omized, placebo-controlled study on 160 patients. Mult Scler. 2004;10:434-441.

    PubMed  Google Scholar 

  185. Killestein J, Hoogervorst ELJ, Reif M, et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology. 2002;58:1404-1407.

    PubMed  Google Scholar 

  186. Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Di Marzo V. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 2004;18: U320-U33.

    Google Scholar 

  187. Bifulco M, Laezza C, Portella G, et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J. 2001;15:U100-U16.

    Google Scholar 

  188. Bifulco M, Di Marzo V. Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat Med. 2002;8:547-550.

    PubMed  Google Scholar 

  189. Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 2003;17:U458-U74.

    Google Scholar 

  190. Guzmán M. Cannabinoids: potential anticancer agents. Nat Rev Cancer. 2003;3:745-755.

    PubMed  Google Scholar 

  191. Guzmán M. Effects on cell viability. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:627-642.

    Google Scholar 

  192. Izzo AA, Coutts AA. Cannabinoids and the digestive tract. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:573-598.

    Google Scholar 

  193. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E. CB1 cannabinoid receptors are involved in neuroprotection via NF-ͫB inhibition. J Cereb Blood Flow Metab. 2005;25:477-484.

    PubMed  Google Scholar 

  194. El Banoua F, Caraballo I, Flores JA, Galan-Rodriguez B, Fernandez-Espejo E. Effects on turning of microinjections into basal ganglia of D1 and D2 dopamine receptors agonists and the cannabinoid CB1 antagonist SR141716A in a rat Parkinson’s model. Neurobiol Dis. 2004;16:377-385.

    PubMed  Google Scholar 

  195. Fernandez-Espejo E, Caraballo I, Rodriguez de Fonseca F, et al. Cannabinoid CB1 antago-nists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experi-mental parkinsonism. Neurobiol Dis. 2005;18:591-601.

    PubMed  Google Scholar 

  196. Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6- tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl). 2001;156:79-85.

    Google Scholar 

  197. Wagner JA, Varga K, Ellis EF, Rzigalinski BA, Martin BR, Kunos G. Activation of periph-eral CB1 cannabinoid receptors in haemorrhagic shock. Nature. 1997;390:518-521.

    PubMed  Google Scholar 

  198. Kadoi Y, Hinohara H, Kunimoto F, Kuwano H, Saito S, Goto F. Effects of AM281, a can-nabinoid antagonist, on systemic haemodynamics, internal carotid artery blood flow and mortality in septic shock in rats. Br J Anaesth. 2005;94:563-568.

    PubMed  Google Scholar 

  199. Robson PJ. Human studies of cannabinoids and medicinal cannabis. In: Pertwee RG, ed. Cannabinoids, Handbook Exp Pharmacol. Heidelberg, Germany: Springer-Verlag; 2005: 719-756.

    Google Scholar 

  200. Robson PJ, Guy GW. Clinical studies of cannabis-based medicines. In: Guy GW, Whittle BA, Robson PJ, eds. The Medicinal Uses of Cannabis and Cannabinoids. London, UK: Pharmaceutical Press; 2005:229-269.

    Google Scholar 

  201. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked canna-bis on patients with multiple sclerosis. Eur Neurol. 1997;38:44-48.

    PubMed  Google Scholar 

  202. Ware MA, Adams H, Guy GW. The medicinal use of cannabis in the UK: results of a nation-wide survey. Int J Clin Pract. 2005;59:291-295.

    PubMed  Google Scholar 

  203. De Vry J, Denzer D, Reissmueller E, et al. 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid CB1 /CB2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J Pharmacol Exp Ther. 2004;310:620-632.

    PubMed  Google Scholar 

  204. Rukwied R, Watkinson A, McGlone F, Dvorak M. Cannabinoid agonists attenuate capsai-cin-induced responses in human skin. Pain. 2003;102:283-288.

    PubMed  Google Scholar 

  205. Dvorak M, Watkinson A, McGlone F, Rukwied R. Histamine-induced responses are attenu-ated by a cannabinoid receptor agonist in human skin. Inflamm Res. 2003;52:238-245.

    PubMed  Google Scholar 

  206. Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004;74:1317-1324.

    PubMed  Google Scholar 

  207. Holdcroft A, Smith M, Jacklin A, et al. Pain relief with oral cannabinoids in familial Mediterranean fever. Anaesthesia. 1997;52:483-488.

    PubMed  Google Scholar 

  208. Pertwee RG. The pharmacology and therapeutic potential of cannabidiol. In: Di Marzo V, ed. Cannabinoids. New York, NY: Kluwer Academic/Plenum Publishers; 2004:32-83.

    Google Scholar 

  209. Mendelson WB, Basile AS. The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology. 2001;25:S36-S39.

    PubMed  Google Scholar 

  210. Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids. 2002;66:101-121.

    PubMed  Google Scholar 

  211. Sim-Selley LJ. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol. 2003;15:91-119.

    PubMed  Google Scholar 

  212. Lichtman AH, Martin BR. Cannabinoid tolerance and dependence. In: Pertwee RG, ed. Cannabinoids, Handbook of Experimental Pharmacolology. Heidelberg, Germany: Springer-Verlag; 2005;168:691-717.

    Google Scholar 

  213. De Vry J, Jentzsch KR, Kuhl E, Eckel G. Behavioral effects of cannabinoids show differen-tial sensitivity to cannabinoid receptor blockade and tolerance development. Behav Pharmacol. 2004;15:1-12.

    PubMed  Google Scholar 

  214. Paria BC, Dey SK. Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation. Chem Phys Lipids. 2000;108:211-220.

    PubMed  Google Scholar 

  215. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet. 2005;365:1389-1397.

    PubMed  Google Scholar 

  216. Idris AI. van’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11:774-779.

    PubMed  Google Scholar 

  217. Brown AJ, Ueno S, Suen K, Dowell SJ, Wise A. Molecular identification of GPR55 as a third G protein-coupled receptor responsive to cannabinoid ligands. Symposium on the Cannabinoids; June 24-27; Clearwater Beach, FL. Burlington, VT: International Cannabinoid Research Society; 2005:16.

    Google Scholar 

  218. Sjögren S, Ryberg E, Lindblom A, et al. A new receptor for cannabinoid ligands Symposium on the Cannabinoids; June 24-27; Clearwater Beach, FL. Burlington, VT: International Cannabinoid Research Society; 2005:106.

    Google Scholar 

  219. Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108-1112.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Pertwee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Pertwee, R.G. (2008). The Therapeutic Potential of Drugs that Target Cannabinoid Receptors or Modulate the Tissue Levels or Actions of Endocannabinoids. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_38

Download citation

Publish with us

Policies and ethics