Skip to main content

Receptors of Mammalian Trace Amines

  • Chapter
  • 2268 Accesses

Abstract

The discovery of a family of G-protein coupled receptors, some of which bind and are activated by biogenic trace amines, has prompted speculation as to the physiological role of these receptors. Observations associated with the distribution of these trace amine associated receptors (TAARs) suggest that they may be involved in depression, attention-deficit hyperactivity disorder, eating disorders, migraine headaches, and Parkinson’s disease. Preliminary in vitro data, obtained using cloned receptors, also suggest a role for TAARs in the function of hallucinogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sabelli HC, Mosnaim AD. Phenylethylamine hypothesis of affective behavior. Am J Psychiatry. 1974;131:695-699.

    CAS  PubMed  Google Scholar 

  2. Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ. Phenylethylamine in paranoid chronic schizophrenia. Science. 1979;206:470-471.

    Article  CAS  PubMed  Google Scholar 

  3. Davis BA, Boulton AA. The trace amines and their acidic metabolites in depression: an overview. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18:17-45.

    Article  CAS  PubMed  Google Scholar 

  4. Sandler M, Ruthven CR, Goodwin BL, Coppen A. Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin Chim Acta. 1979;93:169-171.

    Article  CAS  PubMed  Google Scholar 

  5. Altar C, Wasley A, Martin L. Autoradiographic localization and pharmacology of unique 3Htryptamine binding sites in rat brain. Neuroscience. 1986;17:263-273.

    Article  CAS  PubMed  Google Scholar 

  6. Hauger R, Skolnick P, Paul S. Specific 3Hbeta-phenylethylamine binding sites in rat brain. Eur J Pharmacol. 1982;83:147-148.

    Article  CAS  PubMed  Google Scholar 

  7. Kellar KJ, Cascio CS. 3HTryptamine: high affinity binding sites in rat brain. Eur J Pharmacol. 1982;78:475-478.

    Article  CAS  PubMed  Google Scholar 

  8. Perry DC. 3Htryptamine autoradiography in rat brain and choroid plexus reveals two distinct sites. J Pharmacol Exp Ther. 1986;236:548-559.

    CAS  PubMed  Google Scholar 

  9. Ungar F, Mosnaim A, Ungar B, Wolf M. Tyramine-binding by synaptosomes from rat brain: effect of centrally active drugs. Biol Psychiatry. 1977;12:661-668.

    CAS  PubMed  Google Scholar 

  10. Roeder T. Octopamine in invertebrates. Prog Neurobiol. 1999;59:533-561.

    Article  CAS  PubMed  Google Scholar 

  11. Borowsky B, Adham N, Jones KA, et al. Trace amines: identification of a family of mamma-lian G protein-coupled receptors. Proc Natl Acad Sci USA. 2001;98:8966-8971.

    Article  CAS  PubMed  Google Scholar 

  12. Bunzow JR, Sonders MS, Arttmagangkul S, et al. Amphetamine, 3,4-methylenedioxymetham-phetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmit-ters are agonists of a trace amine receptor. Mol Pharmacol. 2001;60:1181-1188.

    CAS  PubMed  Google Scholar 

  13. Branchek TA, Blackburn TP. Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol. 2003;3:90-97.

    Article  CAS  PubMed  Google Scholar 

  14. Shimazu S, Miklya I. Pharmacological studies with endogenous enhancer substances: β-phenethylamine, tryptamine, and their synthetic derivatives. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:421-427.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt N, Ferger B. The biogenic trace amine tyramine induces pronounced hydroxyl radical production via monoamine oxidase dependent mechanism: an in vivo microdialysis study in mouse striatum. Brain Res. 2004;1012:101-107.

    Article  CAS  PubMed  Google Scholar 

  16. Davenport AP. Peptide and trace amine orphan receptors: prospects for new therapeutic tar-gets. Curr Opin Pharmacol. 2003;3:127-134.

    Article  CAS  PubMed  Google Scholar 

  17. Berry MD. Mammalian central nervous system trace amines: pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004;90:257-271.

    Article  CAS  PubMed  Google Scholar 

  18. Geracitano R, Federici M, Prisco S, Bernardi G, Mercuri NB. Inhibitory effects of trace amines on rat midbrain dopaminergic neurons. Neuropharmacology. 2004;46:807-814.

    Article  CAS  PubMed  Google Scholar 

  19. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC. Trace amine associated receptors from structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics. 2005;85:372-385.

    Article  CAS  PubMed  Google Scholar 

  20. Miller GM, Madras BK. A trace amine receptor (TAR1) is a novel amphetamine receptor in primate brain poster. Paper presented at: Sixty-fifth Annual Meeting of the College on Problems of Drug Dependence (CPDD), June 15-19, 2003; Bal Harbour, FL.

    Google Scholar 

  21. Yin T, Tu Y, Johnstone EM, Little SP. A Characterization of the Trace Amine 1 Receptor (Program No. 961.5). Paper presented at: 2004 Abstract Viewer/Itinerary Planner, 2004 Online; Washington, DC: Society for Neuroscience.

    Google Scholar 

  22. Premont RT, Gainetdinov RR, Caron MG. Following the trace of elusive amines. Proc Natl Acad Sci USA. 2001;98:9474-9475.

    Article  CAS  PubMed  Google Scholar 

  23. Duan J, Martinez M, Sanders AR, et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet. 2004;75:624-638.

    Article  CAS  PubMed  Google Scholar 

  24. Madras BK, Verrico C, Jassen A, Miller GM. Attention Deficit Hyperactivity Disorder (ADHD): New Roles for Old Trace Amines and Monoamine Transporters poster. Paper pre-sented at: The American College of Neuropsychopharmacology (ACNP) 43rd Annual Meeting, December 12-16, 2004; San Juan, Puerto Rico.

    Google Scholar 

  25. Grandy DK, Scanlan TS. Thyroid Hormone Metabolites and Depression: A New Twist on an Old Tale poster. Paper presented at: The American College of Neuropsychopharmacology (ACNP) 43rd Annual Meeting, December 12-16, 2004; San Juan, Puerto Rico.

    Google Scholar 

  26. Scanlan TS, Suchland KL, Hart ME, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638-642.

    Article  CAS  PubMed  Google Scholar 

  27. Jones CK, Eberle EL, Shaw DB, McKinzie DL, Shannon HE. Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther. 2005;312:1055-1063.

    Article  CAS  PubMed  Google Scholar 

  28. Wolinsky TD, Swanson CJ, Zhong H, Smith KE, Branchek TA, Gerald CP. Deficit in Prepulse Inhibition and Enhanced Sensitivity to Amphetamine in Mice Lacking the Trace Amine-1 Receptor poster. Paper presented at: The American College of Neuropsychopharmacology (ACNP) 43rd Annual Meeting; December 12-16, 2004; San Juan, Puerto Rico.

    Google Scholar 

  29. Hirashima A, Pan C, Shinkai K, et al. Quantitative structure-activity studies of octopaminergic agonists and antagonists against nervous system of Locusta migratoria. Bioorg Med Chem. 1998;6:903-910.

    Article  CAS  PubMed  Google Scholar 

  30. Hirashima A, Nagata T, Pan C, Kuwano E, Taniguchi E, Eto M. Three-dimensional molecular field analyses of octopaminergic agonists and antagonists for the locust neuronal octopamine receptor class 3. J Mol Graph Model. 1999;17:198-218.

    Article  CAS  PubMed  Google Scholar 

  31. Hirashima A, Morimoto M, Kuwano E, Taniguchi E, Eto M. Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines. Bioorg Med Chem. 2002;10:117-123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita H. Lewin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lewin, A.H. (2008). Receptors of Mammalian Trace Amines. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_20

Download citation

Publish with us

Policies and ethics