Skip to main content

Role of Monoamine Transporters in Mediating Psychostimulant Effects

  • Chapter
Drug Addiction

Abstract

Monoamine transporters such as the dopamine (DA) transporter (DAT) and the vesicular monoamine transporter-2 (VMAT-2) are critical regulators of DA disposition within the brain. Alterations in DA disposition can lead to conditions such as drug addiction, Parkinson’s disease, and schizophrenia, a fact that underscores the importance of understanding DAergic signaling. Psychostimulants alter DAergic signaling by influencing both DAT and VMAT-2, and although the effects of these drugs result in increased levels of synaptic DA, the mechanisms by which this occurs and the effects that these drugs exert on DAT and VMAT-2 vary. Many psychostimulants can be classified as releasers (ie, amphetamine analogs) or uptake blockers (ie, cocaine-like drugs) based on the mechanism of their acute effects on neurotransmitter flux through the DAT. Releasers and uptake blockers differentially modulate the activity and subcellular distribution of monoamine transporters, a phenomenon likely related to the neurotoxic potential of these drugs to DAergic neurons. This article will review some of the recent findings whereby releasers and uptake blockers alter DAT and VMAT-2 activity and how these alterations may be involved in neurotoxicity, thus providing insight on the neurodegeneration observed in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher SP, Liptrot J, Aburthnott GW. Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo microdialysis. Neurosci Lett. 1991;122:245-248.

    Article  CAS  PubMed  Google Scholar 

  2. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Differences between electrically-, Ritalin-, and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest  impaired storage of dopamine in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res. 1998;94:163-171.

    Article  CAS  PubMed  Google Scholar 

  3. Horn AS, Coyle JT, Snyder SH. Catecholamine uptake by synaptosomes from rat brain: structure-activity relationships of drugs with differential effects on dopamine and norepine-phrine neurons. Mol Pharmacol. 1971;7:66-80.

    CAS  PubMed  Google Scholar 

  4. Hogan KA, Staal RG, Sonsalla PK. Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J Neurochem. 2000;74:2217-2220.

    Article  CAS  PubMed  Google Scholar 

  5. Eyerman DJ, Yamamoto BK. Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the stria-tum. J Pharmacol Exp Ther. 2005;312:160-169.

    Article  CAS  PubMed  Google Scholar 

  6. Brown JM, Riddle EL, Sandoval V, et al. A single methamphetamine administration rapidly decreases vesicular dopamine uptake. J Pharmacol Exp Ther. 2002;302:497-501.

    Article  CAS  PubMed  Google Scholar 

  7. Riddle EL, Topham MK, Haycock JW, Hanson GR, Fleckenstein AE. Differential trafficking of the vesicular monoamine transporter-2 by methamphetamine and cocaine. Eur J Pharmacol. 2002;449:71-74.

    Article  CAS  PubMed  Google Scholar 

  8. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci. 2002;22:8705-8710.

    CAS  PubMed  Google Scholar 

  9. Wayment HK, Deutsch H, Schweri MM, Schenk JO. Effects of methylphenidate analogues on phenethylamine substrates for the striatal dopamine transporter: potential as amphetamine antago-nists. J Neurochem. 1999;72:1266-1274.

    Article  CAS  PubMed  Google Scholar 

  10. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237:1219-1223.

    Article  CAS  PubMed  Google Scholar 

  11. Yeh SY, De Souza EB. Lack of neurochemical evidence for neurotoxic effects of repeated cocaine administration in rats on brain monoamine neurons. Drug Alcohol Depend. 1991;27:51-61.

    Article  CAS  PubMed  Google Scholar 

  12. Fleckenstein AE, Haughey HM, Metzger RR, et al. Differential effects of psychostimulants and related agents on dopaminergic and serotonergic transporter function. Eur J Pharmacol. 1999;382:45-49.

    Article  CAS  PubMed  Google Scholar 

  13. Daws LC, Callaghan PD, Moron JA, et al. Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophys Res Commun. 2002;290: 1545-1550.

    Article  CAS  PubMed  Google Scholar 

  14. Mash DC, Pablo J, Ouyang Q, Hearn WL, Izenwasser S. Dopamine transport function is elevated in cocaine users. J Neurochem. 2002;81:292-300.

    Article  CAS  PubMed  Google Scholar 

  15. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther. 2003;304:1181-1187.

    Article  CAS  PubMed  Google Scholar 

  16. Brown JM, Hanson GR, Fleckenstein AE. Cocaine-induced increases in vesicular dopamine uptake: role of dopamine receptors. J Pharmacol Exp Ther. 2001;298:1150-1153.

    CAS  PubMed  Google Scholar 

  17. Truong JG, Rau KS, Hanson GR. Fleckenstein. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson’s neurodegeneration. Eur J Pharmacol. 2003;474:223-226.

    Article  CAS  PubMed  Google Scholar 

  18. Truong JG, Hanson GR, Fleckenstein AE. Apomorphine increases vesicular monoamine transporter-2 function: implications for neurodegeneration. Eur J Pharmacol. 2004a;492: 143-147.

    Article  CAS  PubMed  Google Scholar 

  19. Truong JG, Newman AH, Hanson GR, Fleckenstein AE. Dopamine D2 receptor activation increases vesicular dopamine uptake and redistributes vesicular monoamine transporter-2 protein. Eur J Pharmacol. 2004b;504:27-32.

    Article  CAS  PubMed  Google Scholar 

  20. Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopamine neurons and chromaffin granules: a mechanism of action. Neuron. 1990;5:797-808.

    Article  CAS  PubMed  Google Scholar 

  21. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15:4102-4108.

    CAS  PubMed  Google Scholar 

  22. Liang NY, Rutledge CO. Evidence for carrier-mediated efflux of dopamine from corpus striatum. Biochem Pharmacol. 1982;31:2479-2484.

    Article  CAS  PubMed  Google Scholar 

  23. Kahlig KM, Binda F, Khoshbouei H, et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA. 2005;102:3495-3500.

    Article  CAS  PubMed  Google Scholar 

  24. Fleckenstein AE, Metzger RR, Gibb JW, Hanson GR. A rapid and reversible change in dopamine transporters induced by methamphetamine. Eur J Pharmacol. 1997;323:R9-10.

    Article  CAS  PubMed  Google Scholar 

  25. Saunders C, Ferrer JV, Shi L, et al. Amphetamine-induced loss of human dopamine trans-porter activity: an internalization-dependent and cocaine sensitive mechanism. Proc Natl Acad Sci USA. 2000;97:6850-6855.

    Article  CAS  PubMed  Google Scholar 

  26. Fleckenstein AE, Gibb JW, Hanson GR. Differential effects of stimulants on monoaminergic transporters: pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol. 2000;406:1-13.

    Article  CAS  PubMed  Google Scholar 

  27. Baucum AJ, Rau KS, Riddle EL, Hanson GR, Fleckenstein AE. Methamphetamine increases dopamine transporter higher molecular weight complex formation via a dopamine- and hyper-thermia-associated mechanism. J Neurosci. 2004;24:3436-3443.

    Article  CAS  PubMed  Google Scholar 

  28. Baucum AJ, Cook GA, Hanson JE, Hanson GR, Fleckenstein AE. Reactive oxygen species contribute to dopamine transporter oligomerization[abstract]. Exp Biol.2005; Abstract 312.6.

    Google Scholar 

  29. Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacu-olation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci. 1994;14:2260-2271.

    CAS  PubMed  Google Scholar 

  30. Marek GJ, Vosmer G, Seiden LS. Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res. 1990;513:274-279.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen R. Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Riddle, E.L., Fleckenstein, A.E., Hanson, G.R. (2008). Role of Monoamine Transporters in Mediating Psychostimulant Effects. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_11

Download citation

Publish with us

Policies and ethics